Diptera, Tephritidae) of Fars Province, Iran
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
365 Fauna Vrsta Tephritinae (Tephritidae, Diptera
M. Bjeliš: Fauna vrsta Tephritinae (Tephritidae, Diptera) sakupljenim u primorskoj Hrvatskoj tijekom 2005. i 2006. godine FAUNA VRSTA TEPHRITINAE (TEPHRITIDAE, DIPTERA) SAKUPLJENIH U PRIMORSKOJ HRVATSKOJ TIJEKOM 2005 I 2006 GODINE. FAUNA OF THE TEPHRITINAE SPECIES (TEPHRITIDAE, DIPTERA) COLLECTED IN THE CROATIAN LITTORAL IN 2005 AND 2006. M. Bjeliš SAŽETAK Tijekom faunističkih istraživanja koja su provedena na području primorske Hrvatske u 2005. i 2006. godini, na osamdeset i jednom lokalitetu, sakupljeno je dvadeset i devet vrsta koje pripadaju u osamnaest rodova. Utvrđena je nazočnost sljedećih vrsta: Acanthiophylus helianthi R., Aciura coryli R., Campiglossa misella L., Campiglosa producta L., Chaetorellia jaceae RD., Chaetostomella cylindrica RD., Dioxyna bidentis RD., Ensina sonchi L., Euaresta bullans L., Myopites stylatus F., Myopites zernii H., Noeeta pupillata F., Orellia falcata S., Oxiaciura tibialis RD., Sphenella marginata F., Tephritis carmen H., Tephritis divisa R., Tephritis formosa L., Tephritis matricariae L., Tephritis praecox L., Tephritis separata R., Terellia gynaeacochroma H., Terellia seratulae L., Terellia tussilaginis F., Trupanea amoena F., Trupanea stelata F., Urophora solstitialis L., Urophora stylata F., i Xyphosia miliaria RD. Ključne riječi: Fauna, primorska Hrvatska, Tephritinae, Tephritidae, ABSTRACT: During the fauna research carried out along the Croatian littoral in the years 2005. and 2006. on eighty one locations, twenty-nine species belonging to the eighteen genus were collected. The following species were confirmed: Acanthiophylus helianthi R., Aciura coryli R., Campiglossa misella L., Campiglosa producta L., Chaetorellia jaceae RD., Chaetostomella cylindrica RD., Dioxyna bidentis RD., Ensina sonchi L., Euaresta bullans L., Myopites stylatus F., Myopites zernii H., Noeeta pupillata F., Orellia falcata S., 365 M. Bjeliš: Fauna vrsta Tephritinae (Tephritidae, Diptera) sakupljenim u primorskoj Hrvatskoj tijekom 2005. -
Dipterists Forum
BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel. -
12 Short Communication
J o u r n a l o f E n t o m o l o g i c a l S o c i e t y o f I r a n 11 2008, 27(2), Supplement, 11-14 Short communication The first report of three genera and fifteen species of Tephritidae (Diptera) from Iran E. Gilasian1&* and B. Merz2 1. Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, P.O. Box 1454, Tehran 19395, Iran, 2. Muséum d’Histoire Naturelle, C.P. 6434, CH-1211 Genève, Switzerland, E-mail: [email protected] ge.ch *Corresponding author, E-mail: [email protected] ƵŶǀƨģ ŻřƶƬǀŞƣƂƃƹžƴūƶƳƶŝƢƬƘŤƯžĮƯƶƳƺĭƵŵżƳŚěžƳŚƿřŻźǀƯƦƿŚƷšřźƄůƽƵŻƺƯŹŵŵƺūƺƯƽŚƷƶ ƳƺưƳƾſŹźŝƾƏ Hypenidium Loew Euleia Walker Tephritidae ƹ žƴºūƶºſƹŚºƷƶºƳƺĭƽƶºưƷƶºƧŶºƿŵźĭƾƿŚºſŚƴƃ ƽƵŵřƺƳŚºų Metasfenisca Hendel ŶƳƺƃƾ ƯƁŹřżĭƱřźƿřŻřŹŚŝƲǀƫƹřƽřźŝ The Tephritidae (= Trypetidae, Trupaneidae, Euribiidae) is a large family of acalyptrate Diptera with over 4300 species known worldwide. Most species are phytophagous and have prominently patterned wings (White, 1988). So they are economically important because of the damage they may cause in fruit plantations (Merz, 2001). Other species are important agents in biological control programs against weeds (White & Elson-Harris, 1992). This family is recognized by the following characters: medium or small sized flies; vertical plate usually dose not reach midpoint of frons and carries one or more orbital bristles; antennae with glabrous or plumose arista; wings usually with a pattern consisting of brown strips and spots, costal vein with two interruptions, one before humeral vein and one at place of ending of subcostal vein; abdomen in males with five and in females with six segments visible externally (Rikhter, 1989). -
The Location Optimization of Wind Turbine Sites with Using the MCDM Approach: a Case Study
Energy Equip. Sys./ Vol. 5/No.2/ June 2017/165-187 Energy Equipment and Systems http://energyequipsys.ut.ac.ir www.energyequipsys.com The location optimization of wind turbine sites with using the MCDM approach: A case study Author ABSTRACT a* Mostafa Rezaei-Shouroki The many advantages of renewable energies—especially wind—such as abundance, permanence, and lack of pollution, have encouraged a Industrial Engineering Department, many industrialized and developing countries to focus more on these Yazd University, Yazd, Iran clean sources of energy. The purpose of this study is to prioritize and rank 13 cities of the Fars province in Iran in terms of their suitability for the construction of a wind farm. Six important criteria are used to prioritize and rank these cities. Among these, wind power density— the most important criterion—was calculated by obtaining the three- hourly wind speed data at the height of 10 m above ground level related to the time period between 2004 and 2013 and then extrapolating these data to acquire wind speed related to the height of 40 m. The Data Envelopment Analysis (DEA) method was used for prioritizing and ranking the cities, after which Analytical Hierarchy Process (AHP) and Fuzzy Technique for Order of Preference by Article history: Similarity to Ideal Solution (FTOPSIS) methods were used to assess the validity of the results. According to the results obtained from these Received : 20 September 2016 three methods, the city of Izadkhast is recommended as the best Accepted : 5 February 2017 location for the construction of a wind farm. Keywords: Wind Farm; Prioritizing; Optimization; Fars Province; Data Envelopment Analysis (DEA). -
Plant Diversity Has Contrasting Effects on Herbivore and Parasitoid
Received: 25 May 2016 | Revised: 1 May 2017 | Accepted: 8 May 2017 DOI: 10.1002/ece3.3142 ORIGINAL RESEARCH Plant diversity has contrasting effects on herbivore and parasitoid abundance in Centaurea jacea flower heads Norma Nitschke1 | Eric Allan2 | Helmut Zwölfer3 | Lysett Wagner1 | Sylvia Creutzburg1 | Hannes Baur4,5 | Stefan Schmidt6 | Wolfgang W. Weisser1 1Institute of Ecology, Friedrich-Schiller- University, Jena, Germany Abstract 2Institute of Plant Sciences, University of High biodiversity is known to increase many ecosystem functions, but studies investi- Bern, Bern, Switzerland gating biodiversity effects have more rarely looked at multi- trophic interactions. We 3Department for Animal Ecology I, University studied a tri- trophic system composed of Centaurea jacea (brown knapweed), its flower of Bayreuth, Bayreuth, Germany 4Abteilung Wirbellose Tiere, Naturhistorisches head- infesting tephritid fruit flies and their hymenopteran parasitoids, in a grassland Museum Bern, Bern, Switzerland biodiversity experiment. We aimed to disentangle the importance of direct effects of 5 Institute of Ecology and Evolution, University plant diversity (through changes in apparency and resource availability) from indirect of Bern, Bern, Switzerland effects (mediated by host plant quality and performance). To do this, we compared 6Bavarian State Collection of Zoology (ZSM), Munich, Germany insect communities in C. jacea transplants, whose growth was influenced by the sur- rounding plant communities (and where direct and indirect effects can occur), with Correspondence Norma Nitschke, Institute of Ecology, potted C. jacea plants, which do not compete with the surrounding plant community Friedrich-Schiller-University, Jena, Germany. (and where only direct effects are possible). Tephritid infestation rate and insect load, Email: [email protected] mainly of the dominant species Chaetorellia jaceae, decreased with increasing plant Present address species and functional group richness. -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
See the Document
IN THE NAME OF GOD IRAN NAMA RAILWAY TOURISM GUIDE OF IRAN List of Content Preamble ....................................................................... 6 History ............................................................................. 7 Tehran Station ................................................................ 8 Tehran - Mashhad Route .............................................. 12 IRAN NRAILWAYAMA TOURISM GUIDE OF IRAN Tehran - Jolfa Route ..................................................... 32 Collection and Edition: Public Relations (RAI) Tourism Content Collection: Abdollah Abbaszadeh Design and Graphics: Reza Hozzar Moghaddam Photos: Siamak Iman Pour, Benyamin Tehran - Bandarabbas Route 48 Khodadadi, Hatef Homaei, Saeed Mahmoodi Aznaveh, javad Najaf ...................................... Alizadeh, Caspian Makak, Ocean Zakarian, Davood Vakilzadeh, Arash Simaei, Abbas Jafari, Mohammadreza Baharnaz, Homayoun Amir yeganeh, Kianush Jafari Producer: Public Relations (RAI) Tehran - Goragn Route 64 Translation: Seyed Ebrahim Fazli Zenooz - ................................................ International Affairs Bureau (RAI) Address: Public Relations, Central Building of Railways, Africa Blvd., Argentina Sq., Tehran- Iran. www.rai.ir Tehran - Shiraz Route................................................... 80 First Edition January 2016 All rights reserved. Tehran - Khorramshahr Route .................................... 96 Tehran - Kerman Route .............................................114 Islamic Republic of Iran The Railways -
Biological Control of Yellow Starthistle
Biological Control of Yellow Starthistle Lincoln Smith, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Joe Balciunas, USDA-ARS-WRRC, 800 Buchanan St, Albany CA 94710 Michael J. Pitcairn, California Dept. of Food and Agriculture, 3288 Meadowview Road, Sacramento, CA 95832 Yellow starthistle (Centaurea solstitialis L.) is an alien plant that probably originated from the eastern Mediterranean. It was first collected in California in 1869, and now infests 42% of the state’s townships. It interferes with land use such as grazing and recreation, displaces native species, and is toxic to horses (Sheley, et al. 1999 and papers cited therein). This weed is much less invasive in its land of origin. This is presumably because natural enemies, such as insects, plant diseases, animals or competing plants help to keep it under natural control. We are exploring for insects and pathogens that attack this plant. They are tested for host specificity to make sure they do not attack other plants. After evaluation and approval by state and federal agencies, these agents will be released to try to reestablish the natural control that occurs in the land of origin. So far, six species of insect biological control agents have been introduced to control yellow starthistle (Turner et al. 1995; Rees et al. 1996; Jette, et al. 1999). All six attack the seedheads. The most promising agent is the hairy weevil (Eustenopus villosus), which is well established in California and occurs in high densities, attacking 25 to 80% of seedheads. Adults damage young flower buds by feeding on them, and lay eggs on later-developing flower buds. -
Flies) Benjamin Kongyeli Badii
Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3]. -
A New Species and Additional Record of Terellia Robineau-Desvoidy (Diptera: Tephritidae) from Turkey with a Key for the Cerajocera Group
Turkish Journal of Zoology Turk J Zool (2018) 42: 661-665 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1803-56 A new species and additional record of Terellia Robineau-Desvoidy (Diptera: Tephritidae) from Turkey with a key for the Cerajocera group 1, 2 1 3 Mehmet YARAN *, Murat KÜTÜK , Vedat GÖRMEZ , Mürşit Ömür KOYUNCU 1 Department of Plant and Animal Breeding, İslahiye Vocational School, Gaziantep University, Gaziantep, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey 3 Department of Plant and Animal Breeding, Araban Vocational School, Gaziantep University, Gaziantep, Turkey Received: 30.03.2018 Accepted/Published Online: 23.10.2018 Final Version: 12.11.2018 Abstract: Genus Terellia Robineau-Desvoidy, 1830 includes approximately 60 species throughout the Palearctic region. Larvae of Terellia develop in the flowerheads of the family Asteraceae. In this study, the authors collected species of Terellia from possible host plants in the summer of 2009 and 2017 in northeastern Turkey using an insect net. Collected materials were pinned and deposited in the Gaziantep University Entomology Laboratory. Upon identification, Terellia (Cerajocera) akguli sp. nov. has been described as a new species and placed in the subgenus Cerajocera. Also, T. (C.) armeniaca Korneyev, 1985 has been recorded for the first time in Turkey with this study. The paper describes new species and presents morphological characteristic figures of the new species. Additionally, the key for the subgenus Cerajocera distributed in Turkey is provided. Key words: Fruit flies, new species, Tephritidae, Terellia, Terellia akguli, Turkey 1. Introduction This study was based on fruit fly samples that were Tephritidae is one of the largest Diptera families; there collected in the summer of 2009 and 2017 in northeastern are about 4500 known species and 500 genera in the Turkey. -
Article a Catalog of Iranian Prostigmatic Mites of Superfamilies
Persian Journal of Acarology, Vol. 2, No. 3, pp. 389–474. Article A catalog of Iranian prostigmatic mites of superfamilies Raphignathoidea & Tetranychoidea (Acari) Gholamreza Beyzavi1*, Edward A. Ueckermann2 & 3, Farid Faraji4 & Hadi Ostovan1 1 Department of Entomology, Science and Research Branch, Islamic Azad University, Fars, Iran; E-mail: [email protected] 2 ARC-Plant Protection Research Institute, Private bag X123, Queenswood, Pretoria, 0121, South Africa; E-mail: [email protected] 3 School of Environmental Sciences and Development, Zoology, North-West University- Potchefstroom Campus, Potchefstroom, 2520, South Africa 4 MITOX Consultants, P. O. Box 92260, 1090 AG Amsterdam, The Netherlands * Corresponding author Abstract This catalog comprises 56 genera and 266 species of mite names of superfamilies Raphignathoidea and Tetranychoidea recorded from Iran at the end of January, 2013. Data on the mite distributions and habitats based on the published information are included. Remarks about the incorrect reports and nomen nudum species are also presented. Key words: Checklist, mite, habitat, distribution, Iran. Introduction Apparently the first checklist about mites of Iran was that of Farahbakhsh in 1961. Subsequently the following lists were published: “The 20 years researches of Acarology in Iran, List of agricultural pests and their natural enemies in Iran, A catalog of mites and ticks (Acari) of Iran and Injurious mites of agricultural crops in Iran” are four main works (Sepasgosarian 1977; Modarres Awal 1997; Kamali et al. 2001; Khanjani & Haddad Irani-Nejad 2006). Prostigmatic mites consist of parasitic, plant feeding and beneficial predatory species and is the major group of Acari in the world. Untill 2011, 26205 species were described in this suborder, of which 4728 species belong to the cohort Raphignathina and tetranychoid and raphignathoid mites include 2211 and 877 species respectively (Zhang et al. -
Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea Solstitialis L.) in California
Proceedings of the X International Symposium on Biological Control of Weeds 747 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 747-751 (2000) Population Buildup and Combined Impact of Introduced Insects on Yellow Starthistle (Centaurea solstitialis L.) in California MICHAEL J. PITCAIRN1, DALE. M. WOODS1, DONALD. B. JOLEY1, CHARLES E. TURNER2, and JOSEPH K. BALCIUNAS2 1California Department of Food and Agriculture, Biological Control Program, 3288 Meadowview Road, Sacramento, California 95832, USA 2United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA Abstract Seven exotic seed head insects have been introduced into the western United States for control of yellow starthistle. Six are established; three are widespread. Preliminary evaluations suggest that no one insect species will be able to reduce yellow starthistle abundance in California. Rather, a combination of the current, and possibly, future natu- ral enemies may be necessary. Studies were initiated in 1993 to evaluate the population buildup, combined impact, and interaction of all available biological control insects on yellow starthistle. Three field sites were established in different climatic regions where yellow starthistle is abundant. Four insects, Bangasternus orientalis, Urophora sirunase- va, Eustenopus villosus, and Larinus curtus, were released at each site in 1993 and 1994 and long-term monitoring was initiated. The accidentally-introduced insect, Chaetorellia succinea, was recovered in 1996-98 at these sites. Four years after the first releases, we have evidence that these biological control agents are having an impact on yellow starthistle seed production that may translate into a decline in mature plant populations.