Modula-3: CS 520 Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proof-Carrying Authentication∗
Proof-Carrying Authentication∗ Andrew W. Appel and Edward W. Felten Secure Internet Programming Laboratory Department of Computer Science Princeton University Princeton, NJ 08544 USA August 9, 1999 Abstract Statements in these frameworks are represented as data structures that are often digitally signed We have designed and implemented a general to ensure their integrity. and powerful distributed authentication frame- work based on higher-order logic. Authenti- Several authentication frameworks exist; we cation frameworks — including Taos, SPKI, mention a few here as examples. The Taos SDSI, and X.509 — have been explained using operating system provided support for secure logic. We show that by starting with the logic, remote procedure call and data structures to we can implement these frameworks, all in the represent authority and identity [6]. X.509 [15] same concise and efficient system. Because our is a widely-used standard for expressing and us- logic has no decision procedure — although ing digital certificates. SPKI [4] and SDSI [14] proof checking is simple — users of the frame- (since merged under the joint name SPKI) work must submit proofs with their requests. were reactions to the perceived complexity of X.509; in both cases the ‘S’ stands for ‘simple.’ 1 Introduction PolicyMaker [3] is a language for expressing se- curity policies; it can be applied to distributed Distributed authentication frameworks allow security policies. Kerberos [12], unlike the other sharing of access to resources across adminis- frameworks, uses symmetric-key encryption to trative boundaries in a distributed system. The authenticate users. Each framework has a main abstractions they support are name-to- differerent semantics and offers a different kind key bindings, access control, and delegation. -
Language-Level Support for Exploratory Programming of Distributed Virtual Environments
In Proc ACM UIST ‘96 (Symp. on User Interface Software and Technology), Seattle, WA, November 6–8, 1996, pp. 83–94. Language-Level Support for Exploratory Programming of Distributed Virtual Environments Blair MacIntyre and Steven Feiner Department of Computer Science, Columbia University, New York, NY, 10027 {bm,feiner}@cs.columbia.edu http://www.cs.columbia.edu/~{bm,feiner} Abstract resulted in an unmanageable welter of client-server relation- ships, with each of a dozen or more processes needing to We describe COTERIE, a toolkit that provides language- create and maintain explicit connections to each other and to level support for building distributed virtual environments. handle inevitable crashes. COTERIE is based on the distributed data-object paradigm for distributed shared memory. Any data object in COTE- We spent a sufficiently large portion of our time reengineer- RIE can be declared to be a Shared Object that is replicated ing client-server code that it became clear to us that our fully in any process that is interested in it. These Shared implementation of the client-server model was unsuitable Objects support asynchronous data propagation with atomic for exploratory programming of distributed research proto- serializable updates, and asynchronous notification of types. The heart of the problem, as we saw it, was a lack of updates. COTERIE is built in Modula-3 and uses existing support for data sharing that was both efficient and easy for Modula-3 packages that support an integrated interpreted programmers to use in the face of frequent and unantici- language, multithreading, and 3D animation. Unlike other pated changes. -
A Trusted Mechanised Javascript Specification
A Trusted Mechanised JavaScript Specification Martin Bodin Arthur Charguéraud Daniele Filaretti Inria & ENS Lyon Inria & LRI, Université Paris Sud, CNRS Imperial College London [email protected] [email protected] d.fi[email protected] Philippa Gardner Sergio Maffeis Daiva Naudžiunien¯ e˙ Imperial College London Imperial College London Imperial College London [email protected] sergio.maff[email protected] [email protected] Alan Schmitt Gareth Smith Inria Imperial College London [email protected] [email protected] Abstract sation was crucial. Client code that works on some of the main JavaScript is the most widely used web language for client-side ap- browsers, and not others, is not useful. The first official standard plications. Whilst the development of JavaScript was initially just appeared in 1997. Now we have ECMAScript 3 (ES3, 1999) and led by implementation, there is now increasing momentum behind ECMAScript 5 (ES5, 2009), supported by all browsers. There is the ECMA standardisation process. The time is ripe for a formal, increasing momentum behind the ECMA standardisation process, mechanised specification of JavaScript, to clarify ambiguities in the with plans for ES6 and 7 well under way. ECMA standards, to serve as a trusted reference for high-level lan- JavaScript is the only language supported natively by all major guage compilation and JavaScript implementations, and to provide web browsers. Programs written for the browser are either writ- a platform for high-assurance proofs of language properties. ten directly in JavaScript, or in other languages which compile to We present JSCert, a formalisation of the current ECMA stan- JavaScript. -
BCL: a Cross-Platform Distributed Data Structures Library
BCL: A Cross-Platform Distributed Data Structures Library Benjamin Brock, Aydın Buluç, Katherine Yelick University of California, Berkeley Lawrence Berkeley National Laboratory {brock,abuluc,yelick}@cs.berkeley.edu ABSTRACT high-performance computing, including several using the Parti- One-sided communication is a useful paradigm for irregular paral- tioned Global Address Space (PGAS) model: Titanium, UPC, Coarray lel applications, but most one-sided programming environments, Fortran, X10, and Chapel [9, 11, 12, 25, 29, 30]. These languages are including MPI’s one-sided interface and PGAS programming lan- especially well-suited to problems that require asynchronous one- guages, lack application-level libraries to support these applica- sided communication, or communication that takes place without tions. We present the Berkeley Container Library, a set of generic, a matching receive operation or outside of a global collective. How- cross-platform, high-performance data structures for irregular ap- ever, PGAS languages lack the kind of high level libraries that exist plications, including queues, hash tables, Bloom filters and more. in other popular programming environments. For example, high- BCL is written in C++ using an internal DSL called the BCL Core performance scientific simulations written in MPI can leverage a that provides one-sided communication primitives such as remote broad set of numerical libraries for dense or sparse matrices, or get and remote put operations. The BCL Core has backends for for structured, unstructured, or adaptive meshes. PGAS languages MPI, OpenSHMEM, GASNet-EX, and UPC++, allowing BCL data can sometimes use those numerical libraries, but are missing the structures to be used natively in programs written using any of data structures that are important in some of the most irregular these programming environments. -
A Model of Inheritance for Declarative Visual Programming Languages
An Abstract Of The Dissertation Of Rebecca Djang for the degree of Doctor of Philosophy in Computer Science presented on December 17, 1998. Title: Similarity Inheritance: A Model of Inheritance for Declarative Visual Programming Languages. Abstract approved: Margaret M. Burnett Declarative visual programming languages (VPLs), including spreadsheets, make up a large portion of both research and commercial VPLs. Spreadsheets in particular enjoy a wide audience, including end users. Unfortunately, spreadsheets and most other declarative VPLs still suffer from some of the problems that have been solved in other languages, such as ad-hoc (cut-and-paste) reuse of code which has been remedied in object-oriented languages, for example, through the code-reuse mechanism of inheritance. We believe spreadsheets and other declarative VPLs can benefit from the addition of an inheritance-like mechanism for fine-grained code reuse. This dissertation first examines the opportunities for supporting reuse inherent in declarative VPLs, and then introduces similarity inheritance and describes a prototype of this model in the research spreadsheet language Forms/3. Similarity inheritance is very flexible, allowing multiple granularities of code sharing and even mutual inheritance; it includes explicit representations of inherited code and all sharing relationships, and it subsumes the current spreadsheet mechanisms for formula propagation, providing a gradual migration from simple formula reuse to more sophisticated uses of inheritance among objects. Since the inheritance model separates inheritance from types, we investigate what notion of types is appropriate to support reuse of functions on different types (operation polymorphism). Because it is important to us that immediate feedback, which is characteristic of many VPLs, be preserved, including feedback with respect to type errors, we introduce a model of types suitable for static type inference in the presence of operation polymorphism with similarity inheritance. -
The Zonnon Project: a .NET Language and Compiler Experiment
The Zonnon Project: A .NET Language and Compiler Experiment Jürg Gutknecht Vladimir Romanov Eugene Zueff Swiss Fed Inst of Technology Moscow State University Swiss Fed Inst of Technology (ETH) Computer Science Department (ETH) Zürich, Switzerland Moscow, Russia Zürich, Switzerland [email protected] [email protected] [email protected] ABSTRACT Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a number of novel programming concepts and constructs. It covers a wide range of programming models from algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we first give a brief overview of the language and then focus on the implementation of the compiler and builder on top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but still “natural” mapping from the language’s intrinsic object model to the underlying CLR. Keywords Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration. 1. INTRODUCTION: THE BRIEF CCI and b) to experiment with evolutionary language HISTORY OF THE PROJECT concepts. The notion of active object was taken from the Active Oberon language [Gut01]. In addition, two This is a technical paper presenting and describing new concurrency mechanisms have been added: an the current state of the Zonnon project. Zonnon is an accompanying communication mechanism based on evolution of the Pascal, Modula, Oberon language syntax-oriented protocols , borrowed from the Active line [Wir88]. -
Unifying Theories of Objects
Unifying Theories of Objects Michael Anthony Smith1;2 and Jeremy Gibbons1 1 Oxford University, UK. 2 Systems Assurance Group, QinetiQ, UK. [email protected] [email protected] Abstract. We present an approach to modelling Abadi{Cardelli-style object calculi as Unifying Theories of Programming (UTP) designs. Here we provide a core object calculus with an operational small-step evalua- tion rule semantics, and a corresponding UTP model with a denotational relational predicate semantics. For clarity, the UTP model is defined in terms of an operand stack, which is used to store the results of sub- programs. Models of a less operational nature are briefly discussed. The consistency of the UTP model is demonstrated by a structural induction proof over the operations of the core object calculus. Overall, our UTP model is intended to provide facilities for encoding both object-based and class-based languages. 1 Introduction Hoare and He's Unifying Theories of Programming (UTP) [6] can be used to formally define how results produced in one formal model can be translated as assumptions to another formal model. Essentially, programs are considered to be predicates that relate the values of their observable input and output variables (their alphabet). For example, the increment program x := x + 1 is typically defined by the relational predicate x 0 = x + 1, where predicate variables x and x 0 denote the input and output values of the program variable x. In general, the alphabet of a program P is denoted by αP; it is the disjoint union of P's input and output sets (inαP and outαP respectively), which in the case of the example is the set fx; x 0g. -
MODULA a Language for Modular Multiprogramming, Wirth, 1976
Research Collection Report MODULA a language for modular multiprogramming Author(s): Wirth, Niklaus Publication Date: 1976 Permanent Link: https://doi.org/10.3929/ethz-a-000199440 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ~ idgenöss · ische ·Institut T echnisc ~he für. Hochschule Informatik Zürich MODULA: A language formodular multiprogramming ~~8rz 1976 18 ~ ., ' , „· Eidgenössische Institut Technische für Hochschule Informatik Zürich Niklaus Wirth MODULA: A language formodular multiprogramming - 1 - N .Wirth Abstract This paper defines a language called Modula, which is intended primarily for programming dedicated computer systems, including process control systems on smaller machines. The language is largely based on Pascal, but in addition to conventional block ) structure it introduces a so - called module structure . A module is a set of procedures, data types, and variables, where the programmer has precise control over the names that are imported from and exported to the environment. Modula includes general multiprocessing facilities, namely processes , interfacp, modules, and Signals . It also allows the specification of facilities that represent a computer ' s specific peripheral devices . Those given in this paper pertain to the PDP - 11. Author ' s address: Institut für Informatik , ETH , CH-8092 Zürich - 2 - Coaten ts 1. Introduction 3 2. 0 verview 5 3. Notation for syotactic description 10 4. Language vocabulary and representation 10 5. Facilities for sequential programmiog 12 1. Constant declarations 12 2. Type declarations 12 1 • Basic types 13 2. E n um e ratio n s 13 3. -
Automated Fortran–C++ Bindings for Large-Scale Scientific Applications
Automated Fortran–C++ Bindings for Large-Scale Scientific Applications Seth R Johnson HPC Methods for Nuclear Applications Group Nuclear Energy and Fuel Cycle Division Oak Ridge National Laboratory ORNL is managed by UT–Battelle, LLC for the US Department of Energy github.com/swig-fortran Overview • Introduction • Tools • SWIG+Fortran • Strategies • Example libraries 2 Introduction 3 How did I get involved? • SCALE (1969–present): Fortran/C++ • VERA: multiphysics, C++/Fortran • MPACT: hand-wrapped calls to C++ Trilinos 4 Project background • Exascale Computing Project: at inception, many scientific app codes were primarily Fortran • Numerical/scientific libraries are primarily C/C++ • Expose Trilinos solver library to Fortran app developers: ForTrilinos product 5 ECP: more exascale, less Fortran Higher-level { }Fortran ECP application codes over time (credit: Tom Evans) 6 Motivation • C++ library developers: expand user base, more F opportunities for development and follow-on funding • Fortran scientific app developers: use newly exposed algorithms and tools for your code C • Multiphysics project integration: in-memory coupling of C++ physics code to Fortran physics code • Transitioning application teams: bite-size migration from Fortran to C++ C++ 7 Tools 8 Wrapper “report card” • Portability: Does it use standardized interoperability? • Reusability: How much manual duplication needed for new interfaces? • Capability: Does the Fortran interface have parity with the C++? • Maintainability: Do changes to the C++ code automatically update -
Metal C Programming Guide and Reference
z/OS Version 2 Release 3 Metal C Programming Guide and Reference IBM SC14-7313-30 Note Before using this information and the product it supports, read the information in “Notices” on page 159. This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2019-02-15 © Copyright International Business Machines Corporation 1998, 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Figures...................................................................................................... vii List of Tables........................................................................................................ ix About this document.............................................................................................xi Who should read this document................................................................................................................. xi Where to find more information..................................................................................................................xi z/OS Basic Skills in IBM Knowledge Center.......................................................................................... xi How to read syntax diagrams......................................................................................................................xi How to send your comments to IBM......................................................................xv -
Programming in Java
Introduction to Programming in Java An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Princeton University ONLINE PREVIEW !"#$%&'(')!"*+,,,- ./01/23,,,0425,67 Publisher Greg Tobin Executive Editor Michael Hirsch Associate Editor Lindsey Triebel Associate Managing Editor Jeffrey Holcomb Senior Designer Joyce Cosentino Wells Digital Assets Manager Marianne Groth Senior Media Producer Bethany Tidd Senior Marketing Manager Michelle Brown Marketing Assistant Sarah Milmore Senior Author Support/ Technology Specialist Joe Vetere Senior Manufacturing Buyer Carol Melville Copyeditor Genevieve d’Entremont Composition and Illustrations Robert Sedgewick and Kevin Wayne Cover Image: © Robert Sedgewick and Kevin Wayne Page 353 © 2006 C. Herscovici, Brussels / Artists Rights Society (ARS), New York Banque d’ Images, ADAGP / Art Resource, NY Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade- marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial caps or all caps. The interior of this book was composed in Adobe InDesign. Library of Congress Cataloging-in-Publication Data Sedgewick, Robert, 1946- Introduction to programming in Java : an interdisciplinary approach / by Robert Sedgewick and Kevin Wayne. p. cm. Includes index. ISBN 978-0-321-49805-2 (alk. paper) 1. Java (Computer program language) 2. Computer programming. I. Wayne, Kevin Daniel, 1971- II. Title. QA76.73.J38S413 2007 005.13’3--dc22 2007020235 Copyright © 2008 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. -
Draft ANSI Smalltalk Standard
NCITS J20 DRAFT December, 1997 of ANSI Smalltalk Standard revision 1.9 Draft American National Standard for Information Systems - Programming Languages - Smalltalk Notice This is a draft proposed American National Standard. As such, this is not a completed standard. The Technical Committee may modify this document as a result of comments received during public review and its approval as a standard. Permission is granted to members of NCITS, its technical committees, and their associated task groups to reproduce this document for the purposes of NCITS standardization activities without further permission, provided this notice is included. All other rights are reserved. Any commercial or for-profit reproduction is strictly prohibited. NCITS J20 DRAFT December, 1997 ii of ANSI Smalltalk Standard revision 1.9 Copyright Copyright 1997 National Committee for Information Technology Standards Permission is granted to duplicate this document for the purpose of reviewing the draft standard. NCITS J20 DRAFT December, 1997 iii of ANSI Smalltalk Standard revision 1.9 Table of Contents Page FORWARD vi 1. GOALS AND SCOPE .................................................................................................................... 5 2. CONFORMING IMPLEMENTATIONS AND PROGRAMS .................................................. 7 3. THE SMALLTALK LANGUAGE ............................................................................................... 8 3.1 COMPUTATIONAL MODEL OF SMALLTALK EXECUTION................................................................