Nullstellensätze and Applications ∗ Kriti Goel1y , Dilip P. Patil2 and Jugal Verma3 1;3 Department of Mathematics, Indian Institute of Technology Bombay 2 Department of Mathematics, Indian Institute of Science Bangalore E-mail : 1
[email protected] , 2
[email protected] and 3
[email protected] Dedicated to the memory of Prof. Dr. Uwe Storch Abstract In this expository paper, we present simple proofs of the Classical, Real, Projective and Combinatorial Nullstellensätze. Several applications are also presented such as a classical theorem of Stickelberger for solutions of polynomial equations in terms of eigenvalues of commuting operators, construction of a principal ideal domain which is not Euclidean, Hilbert’s 17th problem, the Borsuk-Ulam theorem in topology and solutions of the conjectures of Dyson, Erdös and Heilbronn. §1 Introduction The objective of this paper is to present an exposition of four variations of the Hilbert’s Nullstellen- satz, namely, the classical, real, projective and combinatorial. Each of these versions has given rise to new techniques and insights into the basic problem of understanding the common solutions of polynomial equations. Analogues of the HNS have been investigated for non-algebraically closed fields. Notable among them are the real Nullstellensatz [24], [29] and the combinatorial Nullstellensatz [1]. There is a Nullstellensatz for partial differential equations [40] and most recently a tropical Nullstellensatz [41] has also been proved. We have selected simple and short proofs and a few striking applications for each of these versions which are accessible to students with basic background in algebra. The paper by Sudhir R.