Reproduction Types Asexual Fission Budding Parthenogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Reproduction Types Asexual Fission Budding Parthenogenesis Types • Asexual • Sexual Reproduction • Sexual vs. asexual – costs associated with sexual but benefits (“lottery” model) Asexual fission • Fission • budding, • parthenogenesis • Fragmentation- the body of the parent breaks into distinct pieces, each of which can produce an offspring. Planarians exhibit this type of reproduction. • Regeneration- a piece of a parent is detached, it can grow and develop into a completely new individual. Echinoderms exhibit this type of reproduction. budding Parthenogenesis • in females, where growth and development of embryos occurs without fertilization by a male (rotifers, crustaceans, some sharks, nematodes) 1 Sexual reproduction Broadcast spawning • One of the • Broadcast spawning most common • Live birth forms of reproduction • Mating systems in the oceans • Hermaphrodites • Eggs and sperm are – Sequential released into the water – Simultaneous column and are fertilized by neighbors • Often it is synchronous fertilization Live birth in fishes Anadromous fishes 2 Mating systems in sexual smoltification reproduction • Transition to ocean form • Monogamy • Silvering of skin – deposition of purines • Polygamy • Polygyny (the most common polygamous mating such as guanine system in vertebrates so far studied): One male • Parr territorial, smoltification results in has an exclusive relationship with two or more schooling behavior females • Polyandry: One female has an exclusive • Hormonal changes, increased NaK- relationship with two or more males ATPase in gills preparing for salt tolerance • Promiscuity: A member of one sex within the • Body shape changes becoming more social group mates with any member of the streamlined opposite sex. • Coral spawning: • http://www.youtube.com/watch?v=RrMAOBT_Vco&NR=1 • Hermaphrodites • http://www.youtube.com/watch?v=NVqf2geKju4 – Sequential • Barnacle • http://www.youtube.com/watch?v=v1SW-pl2gYs&feature=related – Simultaneous • http://www.youtube.com/watch?v=2TnB4dm3KyM&feature=related • Sea urchin fertilization • http://www.youtube.com/watch?v=T6BtSMerBmw&feature=related • Sea hare hermaphrodite • http://www.youtube.com/watch?v=6lp87hrb-5I • Cuttlefish mating • http://www.youtube.com/watch?v=fR7Dqf0vzzQ&feature=related • Protandry: Simultaneous hermaphrodite Where an organism is born • Hamlet fish as a male, and • Sea hares then changes sex • Barnacles to a female - clownfishes 3 • Protogyny: Where the organism starts as a female, and then changes sex to a male - wrasses 4.
Recommended publications
  • REVIEW Physiological Dependence on Copulation in Parthenogenetic Females Can Reduce the Cost of Sex
    ANIMAL BEHAVIOUR, 2004, 67, 811e822 doi:10.1016/j.anbehav.2003.05.014 REVIEW Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex M. NEIMAN Department of Biology, Indiana University, Bloomington (Received 6 December 2002; initial acceptance 10 April 2003; final acceptance 27 May 2003; MS. number: ARV-25) Despite the two-fold reproductive advantage of asexual over sexual reproduction, the majority of eukaryotic species are sexual. Why sex is so widespread is still unknown and remains one of the most important unanswered questions in evolutionary biology. Although there are several hypothesized mechanisms for the maintenance of sex, all require assumptions that may limit their applicability. I suggest that the maintenance of sex may be aided by the detrimental retention of ancestral traits related to sexual reproduction in the asexual descendants of sexual taxa. This reasoning is based on the fact that successful reproduction in many obligately sexual species is dependent upon the behavioural, physical and physiological cues that accompany sperm delivery. More specifically, I suggest that although parthenogenetic (asexual) females have no need for sperm per se, parthenogens descended from sexual ancestors may not be able to reach their full reproductive potential in the absence of the various stimuli provided by copulatory behaviour. This mechanism is novel in assuming no intrinsic advantage to producing genetically variable offspring; rather, sex is maintained simply through phylogenetic constraint. I review and synthesize relevant literature and data showing that access to males and copulation increases reproductive output in both sexual and parthenogenetic females. These findings suggest that the current predominance of sexual reproduction, despite its well-documented drawbacks, could in part be due to the retention of physiological dependence on copulatory stimuli in parthenogenetic females.
    [Show full text]
  • Reproductive Ecology & Sexual Selection
    Reproductive Ecology & Sexual Selection REPRODUCTIVE ECOLOGY REPRODUCTION & SEXUAL SELECTION • Asexual • Sexual – Attraction, Courtship, and Mating – Fertilization – Production of Young The Evolutionary Enigma of Benefits of Asex Sexual Reproduction • Sexual reproduction produces fewer reproductive offspring than asexual reproduction, a so-called reproductive handicap 1. Eliminate problem to locate, court, & retain suitable mate. Asexual reproduction Sexual reproduction Generation 1 2. Doubles population growth rate. Female Female 3. Avoid “cost of meiosis”: Generation 2 – genetic representation in later generations isn't reduced by half each time Male 4. Preserve gene pool adapted to local Generation 3 conditions. Generation 4 Figure 23.16 The Energetic Costs of Sexual Reproduction Benefits of Sex • Allocation of Resources 1. Reinforcement of social structure 2. Variability in face of changing environment. – why buy four lottery tickets w/ the same number on them? Relative benefits: Support from organisms both asexual in constant & sexual in changing environments – aphids have wingless female clones & winged male & female dispersers – ciliates conjugate if environment is deteriorating Heyer 1 Reproductive Ecology & Sexual Selection Simultaneous Hermaphrodites TWO SEXES • Advantageous if limited mobility and sperm dispersal and/or low population density • Guarantee that any member of your species encountered is the • Conjugation “right” sex • Self fertilization still provides some genetic variation – Ciliate protozoans with + & - mating
    [Show full text]
  • Reproduction in Humans
    P5/6 SCIENCE Reproduction In Humans Sexual reproduction does not only occur in plants. It also occurs in humans where the female reproductive cell and the male reproductive cell unite to form a new individual. Female Sex Organs The ovary is part of the female sex organ. There are two ovaries in each woman’s body. Ova (singular ovum) or eggs are the female sex cells. The ova are stored in the ovaries of a female. A female is born with all the unripe eggs (or ova) she will ever have in her lifetime. When she reaches puberty, an egg will start to mature in the ovary. Every month, an egg will be released by the ovary into one of the Fallopian tubes. This is called ovulation. On average, a female is born with approximately one million eggs but they decline in number and quality as she grows older. In fact, a girl is only left with about 400,000 eggs by the time she reaches puberty. Only a few hundred are released during ovulation. Fallopian tubes ovary uterus (womb) cervix vagina Female reproductive system Male Sex Organs A male has two sex organs. They are the testis and the penis. Sperms are the male sex cells. They are produced in the testes. When a boy reaches puberty, his testes will start to produce sperms. It takes about 72 days for a sperm to grow. urinary bladder (stores urine, not part of the reproductive system) sperm ducts testes penis Male reproductive system Taken from SCIENCE PARTNER: A Complete Guide To Upper Block Science © Singapore Asia Publishers Pte Ltd SAPSCSP5&6_W04 Website: www.sapgrp.com | Facebook: Singapore-Asia-Publishers Page 1/8 P5/6 SCIENCE Reproduction In Humans A sperm cell consists of a head (where the nucleus lies), the midpiece (which is the motor of the sperm) and a tail which helps it to swim.
    [Show full text]
  • Trivers' Parental Investment and Sexual Selection: the Sex That Invests Most in Reproduction Will Be the Choosier Sex
    Recent research reveals In an astonishing study recently undertaken in Western Europe, the following facts emerged: Married females choose to have affairs with males who are dominant, older, more physically attractive, more symmetrical in appearance, and married; females are much more likely to have an affair if their mates are subordinate, younger, physically unattractive, or have asymmetrical features; cosmetic surgery to improve a male's looks doubles his chances of having an adulterous affair; the more attractive a male, the less attentive he is as a father; roughly one in three of the babies born in Western Europe is the product of an adulterous affair. Why Have Sex? (I) We are involved in an “evolutionary arms race” against pathogens who reproduce faster than we do and therefore can modify their genetic structure to overcome our immune system. Sex allows us to modify our genetic structure, through our offspring, to win (for a time) this battle. Lifjeld and colleagues’ findings are yet another illustration of the fact that sex has one killer advantage over other, more efficient means of reproduction. By mixing the genes of two individuals, sex creates a third - the offspring - with a new, unique combination. This maintains genetic variation, fuelling evolution and keeping one step ahead of agents of infectious disease. As evolutionary biologist Jonathan Howard put it: if sex causes disease, then it might also be true that disease causes sex. (Nature 296-299 (2000) 1 Why Have Sex? (II) • Muller’s ratchet and Kondrashov’s solution • Deleterious mutations increase simply as the number of genes in an organism increases.
    [Show full text]
  • Rare Parthenogenic Reproduction in a Common Reef Coral, Porites Astreoides Alicia A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NSU Works Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 1-26-2018 Rare Parthenogenic Reproduction in a Common Reef Coral, Porites astreoides Alicia A. Vollmer [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alicia A. Vollmer. 2018. Rare Parthenogenic Reproduction in a Common Reef Coral, Porites astreoides. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (464) https://nsuworks.nova.edu/occ_stuetd/464. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alicia A. Vollmer Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology M.S. Coastal Zone Management Nova Southeastern University Halmos College of Natural Sciences and Oceanography January 2018 Approved: Thesis Committee Major Professor: Nicole Fogarty Committee Member: Joana Figueiredo Committee Member: Xaymara Serrano This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/464 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY RARE PARTHENOGENIC REPRODUCTION IN A COMMON REEF CORAL, PORITES ASTREOIDES By Alicia A. Vollmer Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology and Coastal Zone Management Nova Southeastern University January 26, 2018 Thesis of Alicia A.
    [Show full text]
  • Seahorse Manual
    Seahorse Manual 2010 Seahorse Manual ___________________________ David Garcia SEA LIFE Hanover, Germany Neil Garrick-Maidment The Seahorse Trust, England Seahorses are a very challenging species in husbandry and captive breeding terms and over the years there have been many attempts to keep them using a variety of methods. It is Sealife and The Seahorse Trust’s long term intention to be completely self-sufficient in seahorses and this manual has been put together to be used, to make this long term aim a reality. The manual covers all subjects necessary to keep seahorses from basic husbandry to indepth captive breeding. It is to be used throughout the Sealife group and is to act as a guide to aquarist’s intent on good husbandry of seahorses. This manual covers all aspects from basic set, up, water parameters, transportation, husbandry, to food types and preparation for all stages of seahorse life, from fry to adult. By including contact points it will allow for feedback, so that experience gained can be included in further editions, thus improving seahorse husbandry. Corresponding authors: David Garcia: [email protected] N. Garrick-Maidment email: [email protected] Keywords: Seahorses, Hippocampus species, Zostera marina, seagrass, home range, courtship, reproduction,, tagging, photoperiod, Phytoplankton, Zooplankton, Artemia, Rotifers, lighting, water, substrate, temperature, diseases, cultures, Zoe Marine, Selco, decapsulation, filtration, enrichment, gestation. Seahorse Manual 2010 David Garcia SEA LIFE Hanover,
    [Show full text]
  • Parthenogensis
    PARTHENOGENSIS Parthenogenesis is the development of an egg without fertilization. (Gr.Parthenos=virgin; gensis=birth). The individuals formed by parthenogenesis are called parthenotes. Parthenogenesis may be of two types. They are natural parthenogenesis and artificial parthenogenesis. 1. NATURAL PARTHENOGENESIS When parthenogenesis occur spontaneously, it is said to be natural parthenogenesis. Parthenogenesis is a regular natural phenomenon in a few groups of animals. Some animals reproduce exclusively by parthenogenesis. 1 In some other species, parthenogenesis alternates with sexual reproduction. Based on this, natural parthenogenesis is divided into two groups, namely complete parthenogenesis and incomplete parthenogenesis. 1) Complete Parthenogenesis In certain animal parthenogenesis is the only method of reproduction. This type of parthenogenesis is called complete or total or obligatory parthenogenesis. Populations exhibiting total parthenogenesis consist entirely of females. There are no males. E.g. Lacerta (lizard). 1) Incomplete Parthenogenesis In some animals parthenogenesis reproduction and sexual reproduction occur alternately. This is called incomplete or cyclical parthenogenesis. 2 Example a. In gallflies, there is one parthenogenetic reproduction and one sexual reproduction per year (P,S,P,S, (P,S,………). b. In aphids, daphnids and rotifers one sexual reproduction occurs in summer after many parthenogenetic reproductions, (P,P,P,P,P,S,…..P,P,P,P,P,S……..P,). Natural parthenogenesis is further classified into two types. They are haploid parthenogenesis or arrhenotoky and diploid parthenogenesis or thelytoky. A. Haploid Parthenogenesis or Arrhenotoky It is the development of a hyploid egg into a haploid animal. All the haploid individulas are males. Arrhenotoky occur in insects, rotifers and arachnids. 3 i. Haploid Parthenogenesis in insects: In insects haploid parthenogenesis is exhibited by hymenoptera, homoptera, colepters and thysanoptera.
    [Show full text]
  • Review Questions Meiosis
    Review Questions Meiosis 1. Asexual reproduction versus sexual reproduction: which is better? Asexual reproduction is much more efficient than sexual reproduction in a number of ways. An organism doesn’t have to find a mate. An organism donates 100% of its’ genetic material to its offspring (with sex, only 50% end up in the offspring). All members of a population can produce offspring, not just females, enabling asexual organisms to out-reproduce sexual rivals. 2. So why is there sex? Why are there boys? If females can reproduce easier and more efficiently asexually, then why bother with males? Sex is good for evolution because it creates genetic variety. All organisms depend on mutations for genetic variation. Sex takes these preexisting traits (created by mutations) and shuffles them into new combinations (genetic recombination). For example, if we wanted a rice plant that was fast-growing but also had a high yield, we would have to wait a long time for a fast-growing rice to undergo a mutation that would also make it highly productive. An easy way to combine these two desirable traits is through sexually reproduction. By breeding a fast-growing variety with a high-yielding variety, we can create offspring with both traits. In an asexual organism, all the offspring are genetically identical to the parent (unless there was a mutation) and genetically identically to each other. Sexual reproduction creates offspring that are genetically different from the parents and genetically different from their siblings. In a stable environment, asexual reproduction may work just fine. However, most ecosystems are dynamic places.
    [Show full text]
  • The Human Reproductive System
    ANATOMY- PHYSIOLOGY-REPRODUCTIVE SYSTEM - IN RESPONSE TO CONVID 19 APRIL 2, 2020 nd Dear students and parents, April 2 , 2020 Beginning two days prior to our last day at school I issued work packets to all students in all classed; the content of which was spanning a two-three week period. Now that our removal from school will continue to at least May 1st, I have provided the following work packets which will span the remainder of the year, should our crisis continue. The following folders are available: ANATOMY – PHYSIOLOGY 1. Packet – THE HUMAN REPRODUCATIVE AND ENDOCRINE SYSTEMS. 2. Packet- THE HUMAN NERVOUS SYSTEM 3. Packet handed our prior to our last day: THE HUMAN EXCRETORY SYSTEM ZOOLOGY 1. Packet- STUDY OF THE CRUSTACEANS 2. Packet- STUDY OF THE INSECTS 3. Packet- handed our prior to our last day- INTRODUCTION TO THE ARTRHROPODS- CLASSES MYRIAPODA AND ARACHNIDA AP BIOLOGY – as per the newly devised topics of study focus, structure of adapted test, test dates and supports provided as per the guidelines and policies of The College Board TO ALL STUDENTS! THESE PACKETS WILL BE GUIDED BY THE SAME PROCEDURES WE EMBRACED DURING FALL TECH WEEK WHERE YOU ARE RESPONSIBLE FOR THE WORK IN THE PACKETS- DELIVERED UPON YOUR RETURN TO SCHOOL OR AS PER UNFORESEEN CHANGES WHICH COME OUR WAY. COLLABORATION IS ENCOURAGED- SO STAY IN TOUCH AND DIG IN! YOUR PACKETS WILL BE A NOTEBOOK GRADE. EVENTUALLY YOU SHALL TAKE AN INDIVIDUAL TEST OF EACH PACKET = AN EXAM GRADE! SCHOOL IS OFF SITE BUT NOT SHUT DOWN SO PLEASE DO THE BODY OF WORK ASSIGNED IN THE PACKETS PROVIDED.
    [Show full text]
  • Independent Evolution of Sex Chromosomes in Eublepharid Geckos, a Lineage with Environmental and Genotypic Sex Determination
    life Article Independent Evolution of Sex Chromosomes in Eublepharid Geckos, A Lineage with Environmental and Genotypic Sex Determination Eleonora Pensabene , Lukáš Kratochvíl and Michail Rovatsos * Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; [email protected] (E.P.); [email protected] (L.K.) * Correspondence: [email protected] or [email protected] Received: 19 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucatán banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across eleven eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently.
    [Show full text]
  • Mixed Asexual and Sexual Reproduction in the Indopacific Reef
    Mixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis David J. Combosch & Steven V. Vollmer Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts 01908 Keywords Abstract Evolutionary significance, minimal cryptic sex, mixed reproduction, parthenogenesis, Pocillopora damicornis is one of the best studied reef-building corals, yet it’s pseudogamy. somewhat unique reproductive strategy remains poorly understood. Genetic studies indicate that P. damicornis larvae are produced almost exclusively par- Correspondence thenogenetically, and yet population genetic surveys suggest frequent sexual David J. Combosch, Marine Science Center, reproduction. Using microsatellite data from over 580 larvae from 13 colonies, Northeastern University, Nahant, MA 01908. we demonstrate that P. damicornis displays a mixed reproductive strategy where Tel.: +1-781-581-7370; sexual and asexual larvae are produced simultaneously within the same colony. Fax: +1-781-581-6076; E-mail: [email protected] The majority of larvae were parthenogenetic (94%), but most colonies (10 of the 13) produced a subset of their larvae sexually. Logistic regression indicates Funding Information that the proportion of sexual larvae varied significantly with colony size, cycle This research was funded by a German day, and calendar day. In particular, the decrease in sexual larvae with colony Academic Exchange Service (DAAD) pre- size suggests that the mixed reproductive strategy changes across the life of the doctoral research scholarship (D.C.), a Three coral. This unique shift in reproductive strategy leads to increasingly asexual Sea Teaching Fellowship (D.C.) and a NSF replications of successful genotypes, which (in contrast to exclusive partheno- OCE grant (S.V.). gens) have already contributed to the recombinant gene pool.
    [Show full text]
  • Sexual Reproduction As an Adaptation to Resist Parasites (A Review) (Evolution/Recombination/Population Genetics/Evolutionary Genetics/Disease Resistance) WILLIAM D
    Proc. Nail. Acad. Sci. USA Vol. 87, pp. 3566-3573, May 1990 Evolution Sexual reproduction as an adaptation to resist parasites (A Review) (evolution/recombination/population genetics/evolutionary genetics/disease resistance) WILLIAM D. HAMILTON*, ROBERT AXELRODtt, AND REIKO TANESE§¶ *Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, United Kingdom; and tInstitute of Public Policy Studies and §Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 Contributed by Robert Axelrod, December 26, 1989 ABSTRACT Darwinian theory has yet to explain ade- Parasites and Sex quately the fact of sex. If males provide little or no aid to offspring, a high (up to 2-fold) extra average fitness has to Parasites are ubiquitous. There are almost no organisms too emerge as a property of a sexual parentage ifsex is to be stable. small to have parasites. They are usually short-lived com- The advantage must presumably come from recombination but pared to their hosts, and this gives them a great advantage in has been hard to identify. It may well lie in the necessity to rate of evolution. Thus antiparasite adaptations are in con- recombine defenses to defeat numerous parasites. A model stant obsolescence. To resist numerous parasites, hosts must demonstrating this works best for contesting hosts whose continually change gene combinations (3, 9-21). Contrary to defense polymorphisms are constrained to low mutation rates. the assumption of the mutation theory (22, 23), the host A review of the literature shows that the predictions ofparasite species needs to preserve not one ideal genotype but rather an array.
    [Show full text]