The Evolutionary Significance of Parthenogenesis and Sexual Reproduction In

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Significance of Parthenogenesis and Sexual Reproduction In The evolutionary significance of parthenogenesis and sexual reproduction in the Australian spiny leaf insect, Extatosoma tiaratum Yasaman Alavi Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy October 2016 School of BioSciences Faculty of Science The University of Melbourne i ii Abstract The costs and benefits of sexual reproduction has long been a subject of debate in biology. The paradox arises from the fact that theoretically, sex is associated with many costs, yet it is the most prevalent mode of reproduction in the tree of life. Facultative parthenogenetic systems, in which females can reproduce both sexually, and in the absence of sperm, parthenogenetically, provide suitable systems to compare costs and benefits of reproductive modes, while minimizing confounding effect that are not directly related to reproductive modes. In this thesis, I used the Australian Phasmatid, Extatosoma tiaratum, to investigate the evolutionary significance of facultative parthenogenesis, and compare fitness consequences of sex and parthenogenesis. The evolutionary significance of facultative parthenogenesis is unknown but male or sperm limitations are potential factors. I investigate male mating frequency and variation in ejaculate size and quality in E. tiaratum. I show that most, but not all, males are able to mate multiply, but ejaculate size decreases with increased number of matings. In addition, ejaculate size increased with increasing time interval between matings, suggesting that E. tiaratum males require time to replenish ejaculate reserves. These findings suggest male sperm limitation may be an important factor influencing the evolution of parthenogenesis in this system. iii The cytological mechanism of parthenogenesis determines the genetic diversity and heterozygosity levels of the offspring and is thus an important component of the comparison between reproductive modes. Using microsatellite markers that I developed for E. tiaratum, I investigated the cytological mechanism of parthenogenesis in this species. I demonstrated that the most likely mechanism of parthenogenesis in E. tiaratum is automixis with terminal fusion, resulting in substantial loss of heterozygosity in the first generation parthenogenetic offspring. Based on these results I predicted parthenogenesis to be associated with fitness reduction in E. tiaratum. I then investigated the fitness consequences of sex and parthenogenesis in E. tiaratum, in terms of offspring immunity and reproductive success. I show that parthenogenesis is associated with fitness reduction both in terms of immune function and reproductive success. Females derived from sexually conceived mothers have higher immune response compared to females derived from parthenogenetically conceived mothers. A female’s reproductive success is substantially higher if she is conceived sexually and produces sexual offspring. In fact, the cost of parthenogenesis on reproductive success is high enough to eliminate the two-fold cost of sex in E. tiaratum. Nevertheless, the cost of parthenogenesis can be compensated in the next generation, if parthenogenetically females produce daughters sexually. The results of this thesis offer a new perspective in understanding the evolution and maintenance of facultative parthenogenesis in E. tiaratum, and suggest that females iv enjoy the benefit of parthenogenesis allowing them to reproduce in the absence of sufficient or preferred sperm, while mediating the costs of homozygosity by reproducing sexually. v Declaration This is to certify that: The thesis comprises only my original work towards the PhD except where indicated in the Preface. Due acknowledgement has been made in the text to all other material used. The thesis is fewer than 100 000 words in length, exclusive of tables, maps bibliographies and appendices. ………………………………………… Yasaman Alavi vi Preface Yasaman Alavi (YA) was the primary author for all manuscripts (presented as chapters) within this thesis. These manuscripts were written with assistance and editorial changes by supervisors Mark Elgar (MAE), Therésa Jones (TMJ), and Andrew Weeks (ARW). The ideas concerning the design of the experimental aspects of this thesis were originally conceived by YA but refined and developed in collaboration with MAE and TMJ. YA carried out the laboratory experiments and field samplings and collected all the data used within this thesis. YA performed analyses of all data with advice and suggestions provided by MAE, TMJ and ARW. Chapter 2-5 of this thesis are written and presented as separate papers. Chapter 2 has been published as Alavi, Y., Elgar, A. M., and Jones, M. T. (2016). Male Mating Success and the Effect of Mating History on Ejaculate Traits in a Facultatively Parthenogenic Insect (Extatosoma tiaratum). Ethology, 122: 1-8. Chapter 3 has been accepted for publication as Alavi, Y., van Rooyen, A., Elgar, M. A., Jones, M. T., and Weeks, A. R. (2016). Novel microsatellite markers suggest the mechanism of parthenogenesis in Extatosoma tiaratum is automixis with terminal fusion. Insect Science, in press. The manuscripts as presented within this thesis are largely unchanged from the published material. vii Acknowledgments I would like to thank my amazing supervisors for their help and support during the production of this thesis. First of all, I am grateful to Mark Elgar, for giving me this wonderful opportunity to come to Melbourne and work on this project, and for his ongoing support and patient guidance. I have learned a lot from him, both in science and also on the philosophy of life. I am truly thankful to Therésa Jones for her constant and brilliant ideas, and for always giving me great advice and motivation. I have learned a lot from her, especially on experimental design and statistical analysis. I am also grateful to Andrew weeks for his helpful advice on chapters 1 and 3 of this thesis. I would like to thank all members of the Elgar and Jones lab for their help and support over the past years. Especially, I am thankful to Gareth Hopkins for his comments on Chapter 2 and 4 of my thesis, and to Dany Zemeitat, Qike Wang, Bernie Wittwer and Eunice Tan for their help in maintaining the insect population in my absence. Also thanks to Joanna Durrant for showing me how to run immune assays. I am thankful to Patrick Honan, Chloe Miller and Maik Fiedel from the Museum Victoria, for their help in the field collections. Many thanks to Anthony Van Rooyen for helping with all the molecular lab work during the development and use of the microsatellite markers. Thanks to Mandy Parfitt, Uoda Khammy, Stephen Frankenberg and Rohan Long for borrowing me equipment for lab work. viii Many thanks to the Holsworth Wildlife Research Endowment for funding this project, and the Melbourne School of Graduate Research and the School of BioSciences for providing funding for conferences. Last but not least, I would like to thank my parents Salimeh and Kambiz, and my brother Behrang, for their everlasting love and support, without which this would not have been possible. ix Table of contents Abstract iii Declaration vi Preface vii Acknowledgments viii Table of contents x List of Figures xiv List of Tables xviii Chapter 1 Introduction: the evolutionary significance of sex and parthenogenesis 1 Modes of reproduction 2 Parthenogenesis: modes, mechanisms and emergence 3 The paradox of sex: theories and empirical evidence 7 What is missing? 12 Facultatively parthenogenetic species as models 13 The study system, an Australian Phasmatid 14 The evolutionary significance of facultative parthenogenesis in E. tiaratum 17 References 27 Chapter 2 Variation in male mating success in a facultatively parthenogenic insect (Extatosoma tiaratum) 35 Summary 36 Introduction 37 Methods 40 Experimental animals 40 Experimental design 40 Preparation of the sperm solution 41 x Sperm density assay 42 Sperm viability assay 42 Statistical analyses 43 Results 45 Male mating history and survival 45 Effects of multiple mating on ejaculate size and quality 46 Discussion 50 References 54 Chapter 3 Novel microsatellite markers suggest the mechanism of parthenogenesis in Extatosoma tiaratum, is automixis with terminal fusion 58 Summary 59 Introduction 60 Methods 63 Laboratory stock population 63 Field collection 63 Next-generation sequencing and de novo genome assembly 64 Microsatellite isolation and characterization 64 Patterns of inheritance 66 The mechanism of parthenogenesis 67 Results 68 Next-generation sequencing and de novo genome assembly 68 Microsatellite isolation and characterization 68 Patterns of allele inheritance 69 Mechanism of parthenogenesis 70 Discussion 77 References 81 Chapter 4 Sex versus parthenogenesis; immune function in a facultatively parthenogenetic Phasmatid (Extatosoma tiaratum) 85 xi Summary 86 Introduction 87 Methods 91 Animal maintenance and culturing 91 Determining reproductive history 92 Haemolymph collection and processing 92 Haemocyte concentration 93 Lytic activity assay 94 Phenoloxidase (PO) assay 95 Statistical analysis 95 Results 97 Determining reproductive history 97 Immune function assays 97 Discussion 106 References 110 Chapter 5 Sex versus parthenogenesis; female reproductive success in a facultatively parthenogenetic Phasmatid (Extatosoma tiaratum) 114 Summary 115 Introduction 116 Methods 121 Animal maintenance 121 Deriving F1 from F0 females 121 F1 fecundity 125 F2 Juvenile survival 125 Offspring survival of field- collected females 126 Microsatellite heterozygosity and modes of conception 127
Recommended publications
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Phasmida (Stick and Leaf Insects)
    ● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects.
    [Show full text]
  • Rare Parthenogenic Reproduction in a Common Reef Coral, Porites Astreoides Alicia A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NSU Works Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 1-26-2018 Rare Parthenogenic Reproduction in a Common Reef Coral, Porites astreoides Alicia A. Vollmer [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alicia A. Vollmer. 2018. Rare Parthenogenic Reproduction in a Common Reef Coral, Porites astreoides. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (464) https://nsuworks.nova.edu/occ_stuetd/464. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alicia A. Vollmer Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology M.S. Coastal Zone Management Nova Southeastern University Halmos College of Natural Sciences and Oceanography January 2018 Approved: Thesis Committee Major Professor: Nicole Fogarty Committee Member: Joana Figueiredo Committee Member: Xaymara Serrano This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/464 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY RARE PARTHENOGENIC REPRODUCTION IN A COMMON REEF CORAL, PORITES ASTREOIDES By Alicia A. Vollmer Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology and Coastal Zone Management Nova Southeastern University January 26, 2018 Thesis of Alicia A.
    [Show full text]
  • Parthenogensis
    PARTHENOGENSIS Parthenogenesis is the development of an egg without fertilization. (Gr.Parthenos=virgin; gensis=birth). The individuals formed by parthenogenesis are called parthenotes. Parthenogenesis may be of two types. They are natural parthenogenesis and artificial parthenogenesis. 1. NATURAL PARTHENOGENESIS When parthenogenesis occur spontaneously, it is said to be natural parthenogenesis. Parthenogenesis is a regular natural phenomenon in a few groups of animals. Some animals reproduce exclusively by parthenogenesis. 1 In some other species, parthenogenesis alternates with sexual reproduction. Based on this, natural parthenogenesis is divided into two groups, namely complete parthenogenesis and incomplete parthenogenesis. 1) Complete Parthenogenesis In certain animal parthenogenesis is the only method of reproduction. This type of parthenogenesis is called complete or total or obligatory parthenogenesis. Populations exhibiting total parthenogenesis consist entirely of females. There are no males. E.g. Lacerta (lizard). 1) Incomplete Parthenogenesis In some animals parthenogenesis reproduction and sexual reproduction occur alternately. This is called incomplete or cyclical parthenogenesis. 2 Example a. In gallflies, there is one parthenogenetic reproduction and one sexual reproduction per year (P,S,P,S, (P,S,………). b. In aphids, daphnids and rotifers one sexual reproduction occurs in summer after many parthenogenetic reproductions, (P,P,P,P,P,S,…..P,P,P,P,P,S……..P,). Natural parthenogenesis is further classified into two types. They are haploid parthenogenesis or arrhenotoky and diploid parthenogenesis or thelytoky. A. Haploid Parthenogenesis or Arrhenotoky It is the development of a hyploid egg into a haploid animal. All the haploid individulas are males. Arrhenotoky occur in insects, rotifers and arachnids. 3 i. Haploid Parthenogenesis in insects: In insects haploid parthenogenesis is exhibited by hymenoptera, homoptera, colepters and thysanoptera.
    [Show full text]
  • Independent Evolution of Sex Chromosomes in Eublepharid Geckos, a Lineage with Environmental and Genotypic Sex Determination
    life Article Independent Evolution of Sex Chromosomes in Eublepharid Geckos, A Lineage with Environmental and Genotypic Sex Determination Eleonora Pensabene , Lukáš Kratochvíl and Michail Rovatsos * Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; [email protected] (E.P.); [email protected] (L.K.) * Correspondence: [email protected] or [email protected] Received: 19 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucatán banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across eleven eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently.
    [Show full text]
  • Phasma Gigas from New Ireland Mark Bushell
    ISSN 0966-0011 PHASMID STUDIES. volume 8, numbers 1 & 2. December 1999. Editor: P.E. Bragg. Published by the Phasmid Study Group. Phasmid Studies ISSN 0966-0011 volume 8, numbers 1 & 2. Contents Studies of the genus Phalces Stal Paul D. Brock . 1 Redescription of Mantis filiformes Fabricius (Phasmatidae: Bacteriinae) Paul D. Brock . 9 Phasmida in Oceania Allan Harman . 13 A Report on a Culture of Phasma gigas from New Ireland Mark Bushell . 20 Reviews and Abstracts Phasmid Abstracts 25 Cover illustration: Female Spinodares jenningsi Bragg, drawing by P.E. Bragg. Studies of the genus Phalces Stal Paul D. Brock, "Papillon", 40 Thorndike Road, Slough SU ISR, UK. Abstract Phalces tuberculatus sp.n. is described from Eland's Bay, Cape Province, South Africa. A key is given to distinguish the Phalces species. Brief notes are given on behaviour, foodplants, and culture notes in the case of P. longiscaphus (de Haan). Key words: Phasmida, Phalces, Phalcestuberculatus sp.n, Introduction As part of my studies on South African stick-insects, I visited Cape Town in September 1998. My research included an examination of the entomology collection at the South African Museum in Cape Town, in addition to material of Phalces species in various museums, observing P. longiscaphus in the wild and rearing this species in captivity. The observations include the description of Phalces tuberculatus sp.n. and a key to distinguish the three Phalces species (of which a Madagascan insect is unlikely to belong to this genus). Museum codens are given below: BMNH Natural History Museum, London, U.K. NHMW Naturhistorisches Museum, Wien, Austria.
    [Show full text]
  • Sex Determination, Sex Ratios and Genetic Conflict
    SEX DETERMINATION, SEX RATIOS AND GENETIC CONFLICT John H. Werren1 and Leo W. Beukeboom2 Biology Department, University of Rochester, Rochester, N.Y. 14627 2Institute of Evolutionary and Ecological Sciences, University of Leiden, NL-2300 RA Leiden, The Netherlands 1998. Ann. Rev. Ecol. & Systematics 29:233-261. ABSTRACT Genetic mechanisms of sex determination are unexpectedly diverse and change rapidly during evolution. We review the role of genetic conflict as the driving force behind this diversity and turnover. Genetic conflict occurs when different components of a genetic system are subject to selection in opposite directions. Conflict may occur between genomes (including paternal- maternal and parental-zygotic conflicts), or within genomes (between cytoplasmic and nuclear genes, or sex chromosomes and autosomes). The sex determining system consists of parental sex ratio genes, parental effect sex determiners and zygotic sex determiners, which are subject to different selection pressures due to differences in their modes of inheritance and expression. Genetic conflict theory is used to explain the evolution of several sex determining mechanisms including sex chromosome drive, cytoplasmic sex ratio distorters and cytoplasmic male sterility in plants. Although the evidence is still limited, the role of genetic conflict in sex determination evolution is gaining support. PERSPECTIVES AND OVERVIEW Sex determining mechanisms are incredibly diverse in plants and animals. A brief summary of the diversity will illustrate the point. In hermaphroditic species both male (microgamete) and female (macrogamete) function reside within the same individual, whereas dioecious (or gonochoristic) species have separate sexes. Within these broad categories there is considerable diversity in the phenotypic and genetic mechanisms of sex determination.
    [Show full text]
  • Evolution of the Asexual Queen Succession System and Its Underlying Mechanisms in Termites Kenji Matsuura*
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 63-72 doi:10.1242/jeb.142547 REVIEW Evolution of the asexual queen succession system and its underlying mechanisms in termites Kenji Matsuura* ABSTRACT et al., 2013) and Cardiocondyla kagutsuchi (Okita and Tsuchida, One major advantage of sexual reproduction over asexual 2016), and in the termites Reticulitermes speratus (Matsuura et al., reproduction is its promotion of genetic variation, although it 2009), Reticulitermes virginicus (Vargo et al., 2012), Reticulitermes reduces the genetic contribution to offspring. Queens of social lucifugus (Luchetti et al., 2013), Embiratermes neotenicus insects double their contribution to the gene pool, while overuse of (Fougeyrollas et al., 2015) and Cavitermes tuberosus (Fournier asexual reproduction may reduce the ability of the colony to adapt to et al., 2016). environmental stress because of the loss of genetic diversity. Recent The capacity for parthenogenesis in termites (Isoptera) was first studies have revealed that queens of some termite species can solve reported by Light (1944). However, the adaptive function of this tradeoff by using parthenogenesis to produce the next generation parthenogenesis in termite life history had not been examined in of queens and sexual reproduction to produce other colony members. detail until recently. This is likely because parthenogenetic This reproductive system, known as asexual queen succession (AQS), reproduction has been regarded as an unusual case with little has been identified in the subterranean termites Reticulitermes adaptive significance in nature. Even after the finding of colony – speratus, Reticulitermes virginicus and Reticulitermes lucifugus and foundation of female female pairs by parthenogenesis, researchers in the Neotropical higher termites Embiratermes neotenicus and still believed that the function of parthenogenesis was no more than ‘ ’ Cavitermes tuberosus.
    [Show full text]
  • Reproduction Types Asexual Fission Budding Parthenogenesis
    Types • Asexual • Sexual Reproduction • Sexual vs. asexual – costs associated with sexual but benefits (“lottery” model) Asexual fission • Fission • budding, • parthenogenesis • Fragmentation- the body of the parent breaks into distinct pieces, each of which can produce an offspring. Planarians exhibit this type of reproduction. • Regeneration- a piece of a parent is detached, it can grow and develop into a completely new individual. Echinoderms exhibit this type of reproduction. budding Parthenogenesis • in females, where growth and development of embryos occurs without fertilization by a male (rotifers, crustaceans, some sharks, nematodes) 1 Sexual reproduction Broadcast spawning • One of the • Broadcast spawning most common • Live birth forms of reproduction • Mating systems in the oceans • Hermaphrodites • Eggs and sperm are – Sequential released into the water – Simultaneous column and are fertilized by neighbors • Often it is synchronous fertilization Live birth in fishes Anadromous fishes 2 Mating systems in sexual smoltification reproduction • Transition to ocean form • Monogamy • Silvering of skin – deposition of purines • Polygamy • Polygyny (the most common polygamous mating such as guanine system in vertebrates so far studied): One male • Parr territorial, smoltification results in has an exclusive relationship with two or more schooling behavior females • Polyandry: One female has an exclusive • Hormonal changes, increased NaK- relationship with two or more males ATPase in gills preparing for salt tolerance • Promiscuity:
    [Show full text]
  • ©Zoologische Staatssammlung München;Download: Http
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 1994 Band/Volume: 017 Autor(en)/Author(s): Carlberg Ulf Artikel/Article: Bibliography of Phasmida (Insecta). VII. 1985-1989 179- 191 ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at Allred, M. L., Stark, B. P. & Lentz, D. L. 1986. Egg capsule morphology of Anisomorpha buprestoides (Phasmatodea: Pseudophasmatidae). - Ent. News 97: 169-174 Baccetti, B. 1985. Evolution of the sperm cell. In: Metz, C. B. & Monroy, A. (Eds.), Biology of Fertilization, vol. 2, pp. 3-58. New York (Academic Press) - - 1987a. Spermatozoa and stick insect phylogeny. - In: Mazzini & Scali (Eds.) 1987: 177-123 - - (Ed.) 1987b. Evolutionary Biology of Orthopteroid Insects. Chichester (EUis Horwood), 1-612 pp. - - 1987c. Spermatozoa and phylogeny in orthopteroid insects. - In: Baccetti (Ed.) 1987c: 12-112 Bart, A. 1988. Proximal leg regeneration in Cmmisius morosus: growth, intercalation and proximaliza- tion. - Development 102: 71-84 Bässler, U. 1985. Proprioceptive control of stick insect Walking. - In: Gewecke & Wendler (Eds.) 1985: 43-48 - - 1986a. On the definition of central pattern generator and its sensory control. - Biol. Cybern. 54: 65-69 - - 1986b. Afferent control of Walking movements in the stick insect C/;n/af/fna impigra. 1. Decerebrated - 345-349 animals on a treadband. J. Comp Physiol. A 158: - - - 1986c. Ibid. 11. Reflex reversal and the release of the swing phase in the restrained foreleg. J. Comp. Physiol. A 158: 351-362 - - 1987a. Timing and shaping influences on the motor Output for Walking in stick insects.
    [Show full text]
  • Phasmid Studies Volume 15 Issues 1&2
    Printed ISSN 0966-0011 Online ISSN 1750-3329 PHASMID STUDIES Volume 15, numbers 1 & 2. March 2007. Editor: Dr. P.E. Bragg. Produced by the Phasmid Study Group The Phasmid Study Group. The Phasmid Study Group (PSG) was formed in 1980 to foster the study of phasmids. The group currently has several hundred members worldwide. The membership ranges from young children to professional entomologists. The PSG holds regular meetings and presents displays at all the major entomological exhibitions in the U.K. The PSG places emphasis on study by rearing and captive breeding and has a panel of breeders who distribute livestock to other members. The PSG produces two publications which are issued free to members. The Phasmid Study Group Newsletter is issued quarterly and contains news items, livestock information, details of exhibitions and meetings, and a variety of short articles on all aspects of phasmids. Phasmid Studies is issued on-line and in print. Typically it is produced biannually, in March and September, but this is currently under review. It contains longer articles on all aspects of phasmids, with an emphasis on natural history, captive breeding, taxonomy, and behavioural studies. Each issue contains abstracts of papers from other recent publications. Details of membership may be obtained from the Treasurer and Membership Secretary, Paul Brock, "Papillon", 40 Thorndike Road, Slough, Berks, SL2 1SR, U.K. Annual subscription rates are currently: U.K. £12.00; Europe £14.00; Worldwide £15.00. Phasma. This is a Dutch-Belgian group with similar aims to the Phasmid Study Group. It produces a quarterly newsletter, Phasma, which is published in Dutch.
    [Show full text]
  • Facultative Sex and Reproductive Strategies in Response to Male Availability in the Spiny Stick Insect, Extatosoma Tiaratum
    CSIRO PUBLISHING www.publish.csiro.au/journals/ajz Australian Journal of Zoology, 2010, 58, 228–233 Facultative sex and reproductive strategies in response to male availability in the spiny stick insect, Extatosoma tiaratum Angela Schneider A and Mark A. Elgar A,B ADepartment of Zoology, University of Melbourne, Vic. 3010, Australia. BCorresponding author. Email: [email protected] Abstract. Facultative thelytoky, in which females can reproduce both sexually and asexually, offers a promising model system to understand the evolutionary significance of sex, by providing insights into whether the different reproductive modes reflect an adaptive life-history response to varying environmental conditions. Females of the spiny stick insect, Extatosoma tiaratum, can reproduce both sexually or asexually. We show that virgin females signal their reproductive state: males respond to signals produced by virgin females that have not commenced ovipositing, but fail to respond to ovipositing virgin females. Virgin females reared under different social environments varied their reproductive output: virgin females reared in the absence of males laid more eggs over a seven-day period than virgin females reared in the presence of males. The reproductive output of mated females over a seven-day period was higher than that of virgin females. These data suggest that female E. tiaratum adjust several life-history strategies in conjunction with facultative thelytoky. Additional keywords: parthenogenetic, asexual, sex, oviposition, sexual signals, phasmatid. Introduction Parthenogenesis is thought to be favoured in environments The taxonomically widespread distribution of sexual that are stable (e.g. Hoffmann et al. 2008) and/or in which sex is reproduction is a paradox for evolutionary theory: while difficult or impossible (e.g.
    [Show full text]