Carcinogenesis vol.23 no.6 pp.1071–1077, 2002 Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases Ercole L.Cavalieri1,3, Kai-Ming Li1, Narayanan Balu1, elevated level of reactive oxygen species, a condition known Muhammad Saeed1, Prabu Devanesan1, as oxidative stress (1,2). As electrophiles, catechol quinones Sheila Higginbotham1, John Zhao2, Michael L.Gross2 and can form covalent adducts with cellular macromolecules, Eleanor G.Rogan1 including DNA (4). These are stable adducts that remain in DNA unless removed by repair and depurinating ones that are 1Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, released from DNA by destabilization of the glycosyl bond. NE 68198-6805 and 2Department of Chemistry, Washington University, Thus, DNA can be damaged by the reactive quinones them- One Brookings Drive, St Louis, MO 63130, USA selves and by reactive oxygen species (hydroxyl radicals) 3To whom correspondence should be addressed (1,4,5). The formation of depurinating adducts by CE quinones Email:
[email protected] reacting with DNA may be a major event in the initiation of Catechol estrogens and catecholamines are metabolized to breast and other human cancers (4,5). The depurinating adducts quinones, and the metabolite catechol (1,2-dihydroxyben- are released from DNA, leaving apurinic sites in the DNA zene) of the leukemogenic benzene can also be oxidized to that can generate