Bottom-Water Temperature Controls on Biogenic Silica Dissolution And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sediment Activity Answer Key
Sediment Activity Answer Key 1. Were your predictions close to where calcareous and siliceous oozes actually occur? Answers vary. 2. How does your map compare with the sediment distribution map? Answers vary. 3. Which type of ooze dominates the ocean sediments, calcareous or siliceous? Why? Calcareous sediments are formed from the remains of organisms like plankton with calcium-based skeletons1, such as foraminifera, while siliceous ooze is formed from the remains of organisms with silica-based skeletons like diatoms or radiolarians. Calcareous ooze dominates ocean sediments. Organisms with calcium-based shells such as foraminifera are abundant and widely distributed throughout the world’s ocean basins –more so than silica-based organisms. Silica-based phytoplankton such as diatoms are more limited in distribution by their (higher) nutrient requirements and temperature ranges. 4. What parts of the ocean do not have calcareous ooze? What might be some reasons for this? Remember that ooze forms when remains of organisms compose more than 30% of the sediment. The edges of ocean basins bordering land tend to have a greater abundance of lithogenous sediment –sediment that is brought into the ocean by water and wind. The proportion of lithogenous sediment decreases however as you move away from the continental shelf. In nutrient rich areas such as upwelling zones in the polar and equatorial regions, silica-based organisms such as diatoms or radiolarians will dominate, making the sediments more likely to be a siliceous-based ooze. Further, factors such as depth, temperature, and pressure can affect the ability of calcium carbonate to dissolve. Areas of the ocean that lie beneath the carbonate compensation depth (CCD), below which calcium carbonate dissolves, typically beneath 4-5 km, will be dominated by siliceous ooze because calcium-carbonate-based material would dissolve in these regions. -
Four Hundred Million Years of Silica Biomineralization in Land Plants
Four hundred million years of silica biomineralization in land plants Elizabeth Trembath-Reicherta,1, Jonathan Paul Wilsonb, Shawn E. McGlynna,c, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; bDepartment of Biology, Haverford College, Haverford, PA 19041; and cGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved February 20, 2015 (received for review January 7, 2015) Biomineralization plays a fundamental role in the global silicon Silica is widely used within plants for structural support and cycle. Grasses are known to mobilize significant quantities of Si in pathogen defense (19–21), but it remains a poorly understood the form of silica biominerals and dominate the terrestrial realm aspect of plant biology. Recent work on the angiosperm Oryza today, but they have relatively recent origins and only rose to sativa demonstrated that silica accumulation is facilitated by taxonomic and ecological prominence within the Cenozoic Era. transmembrane proteins expressed in root cells (21–24). Phy- This raises questions regarding when and how the biological silica logenetic analysis revealed that these silicon transport proteins cycle evolved. To address these questions, we examined silica were derived from a diverse family of modified aquaporins that abundances of extant members of early-diverging land plant include arsenite and glycerol transporters (19, 21, 25, 26). A clades, which show that silica biomineralization is widespread different member of this aquaporin family was recently identi- across terrestrial plant linages. Particularly high silica abundances fied that enables silica uptake in the horsetail Equisetum,an are observed in lycophytes and early-diverging ferns. -
Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean. -
Dive Into Oceanography with Trusted Content and Innovative Media
Dive into Oceanography with Trusted Content and Innovative Media The best-selling brief book in the oceanography market combines dynamic visuals and a student-friendly narrative to bring oceanography to life and inspire students to engage and learn more about the oceans and environments around them. The 13th edition creates an interactive learning experience, providing tightly integrated text and digital offerings that make oceanography approachable and digestible for students. An emphasis on the process of science throughout the text provides students with an understanding of how scientists think and work. It also helps students develop the scientific skills of devising experiments and interpreting data. A01_TRUJ1521_13_SE_WALK.indd 1 28/11/2018 13:12 Dive into the Process of Science GraphIt! Activities are a great way to help your students develop their understanding of graphs and data. These activities use real data to help students build science literacy skills and their understanding of how to analyze and interpret graphs. 4.5 What Are the Characteristics of Cosmogenous Sediment? 125 PROCESS OF SCIENCE 4.1: extinction, large outpourings of basaltic did not reveal any K–T deposits. Evidently, When The Dinosaurs Died: volcanic rock in India (called the Deccan the impact and resulting huge waves had Traps) and other locations had occurred. stripped the ocean floor of its sediment. The Cretaceous–Tertiary Also, if there was a catastrophic meteor However, at 1600 kilometers (1000 miles) (K–T) Event impact, where was the crater? from the impact site, the telltale sediments In the early 1990s, the 190-kilometer from the catastrophe, such as the iridium- BACKGROUND (120-mile)-wide Chicxulub (pronounced rich clay layer, were preserved in sea floor The extinction of the dinosaurs—and about “SCHICK-sue-lube”) Crater off the Yu- sediments. -
(Rhizaria) to Biogenic Silica Export in the California Current Ecosystem
Global Biogeochemical Cycles RESEARCH ARTICLE The Significance of Giant Phaeodarians (Rhizaria) 10.1029/2018GB005877 to Biogenic Silica Export in the California Key Points: Current Ecosystem • Phaeodarian skeletons contain large amounts of silica (0.37–43.42 μg Si/ Tristan Biard1 , Jeffrey W. Krause2,3 , Michael R. Stukel4 , and Mark D. Ohman1 cell) that can be predicted from cell size and biovolume 1Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, 2Dauphin Island Sea Lab, • Phaeodarian contribution to bSiO2 3 4 export from the euphotic zone Dauphin Island, AL, USA, Department of Marine Sciences, University of South Alabama, Mobile, AL, USA, Earth, Ocean, and increases substantially toward Atmospheric Science Department, Florida State University, Tallahassee, FL, USA oligotrophic regions with low total bSiO2 export • Worldwide, Aulosphaeridae alone Abstract In marine ecosystems, many planktonic organisms precipitate biogenic silica (bSiO2) to build fi may represent a signi cant proportion silicified skeletons. Among them, giant siliceous rhizarians (>500 μm), including Radiolaria and Phaeodaria, of bSiO2 export to the deep mesopelagic ocean (>500 m) are important contributors to oceanic carbon pools but little is known about their contribution to the marine silica cycle. We report the first analyses of giant phaeodarians to bSiO2 export in the California Current μ Supporting Information: Ecosystem. We measured the silica content of single rhizarian cells ranging in size from 470 to 3,920 m • Supporting Information S1 and developed allometric equations to predict silica content (0.37–43.42 μg Si/cell) from morphometric • Figure S1 measurements. Using sediment traps to measure phaeodarian fluxes from the euphotic zone on four cruises, • Figure S2 • Figure S3 we calculated bSiO2 export produced by two families, the Aulosphaeridae and Castanellidae. -
4. a Growth Model for Polymetallic Nodules
A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐CLIPPERTON FRACTURE ZONE ISA TECHNICAL STUDY SERIES Technical Study No. 1 Global Non‐Living Resources on the Extended Continental Shelf: Prospects at the year 2000 Technical Study No. 2 Polymetallic Massive Sulphides and Cobalt‐Rich Ferromanganese Crusts: Status and Prospects Technical Study No. 3 Biodiversity, Species Ranges and Gene Flow in the Abyssal Pacific Nodule Province: Predicting and Managing the Impacts of Deep Seabed Mining Technical Study No. 4 Issues associated with the Implementation of Article 82 of the United Nations Convention on the Law of the Sea Technical Study No. 5 Non‐Living resources of the Continental Shelf beyond 200 nautical miles: Speculations on the Implementation of Article 82 of the United Nations Convention on the Law of the Sea PAGE | II A GEOLOGICAL MODEL OF POLYMETALLIC NODULE DEPOSITS IN THE CLARION‐ CLIPPERTON FRACTURE ZONE This report contains a summary of two documents – A Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone and a Prospector’s Guide prepared under the project ‘Development of a Geological Model of Polymetallic Nodule Deposits in the Clarion‐Clipperton Fracture Zone, Pacific Ocean’. ISA TECHNICAL STUDY: NO. 6 International Seabed Authority Kingston, Jamaica PAGE | III The designation employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Seabed Authority concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers or maritime boundaries. All rights reserved. -
20. Shell Horizons in Cenozoic Upwelling-Facies Sediments Off Peru: Distribution and Mollusk Fauna in Cores from Leg 1121
Suess, E., von Huene, R., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 112 20. SHELL HORIZONS IN CENOZOIC UPWELLING-FACIES SEDIMENTS OFF PERU: DISTRIBUTION AND MOLLUSK FAUNA IN CORES FROM LEG 1121 Ralph Schneider2 and Gerold Wefer2 ABSTRACT Shell layers in cores extracted from the continental margin off Peru during Leg 112 of the Ocean Drilling Program (ODP) show the spatial and temporal distribution of mollusks. In addition, the faunal composition of the mollusks in these layers was investigated. Individual shell layers have been combined to form shell horizons whose origin has been traced to periods of increased molluscan growth. It seems that the limiting factor for the growth of mollusks in upwelling regions near the coast of Peru is primarily the oxygen content of the bottom water. Optimal living conditions for mollusks are found at the upper boundary of the oxygen-minimum layer (OML). This OML in the modern sea ranges in depths from 100 to 500 m. Fluctuations in the OML boundary control the spatial and temporal distribution of shell horizons on the outer shelf and upper continental slope. The distribution of mollusks depends further on tectonic events and bottom current effects in the study area. In the range of outer shelf and upper slope, these shell horizons were developed during times of lowered sea level, from the late Miocene through the Quaternary, especially during glacial episodes in the late Quaternary. INTRODUCTION comprehensive reviews of the bivalve and gastropod taxon• omy of the equatorial East Pacific faunal province, but con• Ten holes were drilled using the drill ship JOIDES Reso• tained little information about the ecology of the genera lution during Leg 112, in November and December 1986, on described. -
Ocean Deposits Ocean Deposits Are the Unconsolidated Sediments (Inorganic Or Organic ) Derived from Various Sources Deposited on the Oceanic Floor
Ocean Deposits Ocean deposits are the unconsolidated sediments (Inorganic or Organic ) derived from various sources deposited on the oceanic floor. What are the sources of these ocean deposits ? These ocean deposits are derived from three major sources: 1- Terrigenous Sources 2- Volcanic Deposits 3- Pelagic Deposits What are Terrigenous Deposits ? Weathering is an ongoing process being carried upon,on the various continental rocks by numerous mechanical and chemical agents. As a result of which, these rocks get disintegrated and get decomposed to form fine to coarse sediments.These sediments brought by rivers, streams, winds, glaciers, oceanic currents, waves etc get deposited upon the continental margins are thereby known as terrigenous deposits. The shape and size of these materials differ which in turn influence their seaward distribution. Bigger sized sediments get deposited near the coast such as boulders, cobbles and pebbles, while the finer sediments get deposited away from the sea coast. On the basis of size of particles and density, following pattern has been identified. Deposit Size( Diameter) Gravel 2mm- 256mm Sand 1mm – 1/16mm Silt 1/32mm – 1/256mm Clay 1/256mm – 1/8192mm Mud Finer than 1/8192mm Mud has been further classified into following categories: Type of Mud Characteristics Sediments derived from rocks containing Iron Blue Mud Sulphide and decomposed organic content. Sediments derived from rocks containing Iron Red Mud Oxide Color of blue mud changes into green due to reaction with sea water. It Contains silicates of Green Mud potassium and glauconites Derived from coral reefs located on continental Coral Mud shelf What are Volcanic Deposits ? These are the materials which are deposited in marine environment by volcanic eruptions on land which are carried by wind, river, rain wash etc to the oceans and volcanic eruption in the ocean which deposit sediments directly into the ocean. -
Net Biogenic Silica Production and the Contribution of Diatoms to New
JPR Advance Access published September 12, 2015 Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (2015) 0(0): 1–14. doi:10.1093/plankt/fbv077 Costa Rica Dome: Flux and Zinc Experiments Net biogenic silica production and Downloaded from the contribution of diatoms to new production and organic matter export http://plankt.oxfordjournals.org/ in the Costa Rica Dome ecosystem JEFFREY W.KRAUSE1,2*, MICHAEL R. STUKEL3, ANDREW G. TAYLOR4, DARCYA. A. TANIGUCHI4,5, ALAIN DE VERNEIL4 AND MICHAEL R. LANDRY4 1 2 DAUPHIN ISLAND SEA LAB, 101 BIENVILLE BLVD, DAUPHIN ISLAND, AL 36528, USA, UNIVERSITY OF SOUTH ALABAMA, LIFE SCIENCES BUILDING ROOM 25, 3 4 MOBILE, AL 36688, USA, FLORIDA STATE UNIVERSITY, P.O. BOX 3064520, TALLAHASSEE, FL 32306-4520, USA, SCRIPPS INSTITUTION OF OCEANOGRAPHY, 5 by guest on September 13, 2015 9500 GILMAN DR., LA JOLLA, CA 92093-0227, USA AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 77 MASSACHUSETTS AVENUE, BUILDING 54-1511A, CAMBRIDGE, MA 02142, USA *CORRESPONDING AUTHOR: [email protected] Received April 17, 2015; accepted August 21, 2015 Corresponding editor: Pia Moisander We determined the net rate of biogenic silica (bSiO2) production and estimated the diatom contribution to new pro- duction and organic matter export in the Costa Rica Dome during summer 2010. The shallow thermocline signifi- cantly reduces bSiO2 dissolution rates below the mixed layer, leading to significant enhancement of bSiO2 relative to organic matter (silicate-pump condition). This may explain why deep export of bSiO2 in this region is elevated by an order of magnitude relative to comparable systems. Diatom carbon, relative to autotrophic carbon, was low (,3%); however, the contribution of diatoms to new production averaged 3 and 13% using independent approaches. -
An Ecosystem Model of the Global Ocean Including Fe, Si, P Colimitations Olivier Aumont, Ernst Maier-Reimer, Stéphane Blain, P
An ecosystem model of the global ocean including Fe, Si, P colimitations Olivier Aumont, Ernst Maier-Reimer, Stéphane Blain, P. Monfray To cite this version: Olivier Aumont, Ernst Maier-Reimer, Stéphane Blain, P. Monfray. An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochemical Cycles, American Geophysical Union, 2003, 17 (2), pp.n/a-n/a. 10.1029/2001GB001745. hal-03131808 HAL Id: hal-03131808 https://hal.archives-ouvertes.fr/hal-03131808 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 17, NO. 2, 1060, doi:10.1029/2001GB001745, 2003 An ecosystem model of the global ocean including Fe, Si, P colimitations Olivier Aumont,1 Ernst Maier-Reimer,2 Ste´phane Blain,3 and P. Monfray4 Received 27 September 2001; revised 26 April 2002; accepted 6 September 2002; published 4 June 2003. [1] Observations have shown that large areas of the world ocean are characterized by lower than expected chlorophyll concentrations given the ambient phosphate and nitrate levels. In these High Nutrient-Low Chlorophyll regions, limitations of phytoplankton growth by other nutrients like silicate or iron have been hypothesized and further evidenced by in situ experiments. -
A038p269.Pdf
AQUATIC MICROBIAL ECOLOGY Vol. 38: 269–282, 2005 Published March 18 Aquat Microb Ecol Phytoplankton community structure changes following simulated upwelled iron inputs in the Peru upwelling region Clinton E. Hare1, Giacomo R. DiTullio2, Charles G. Trick3, Steven W. Wilhelm4 Kenneth W. Bruland5, Eden L. Rue5, David A. Hutchins1,* 1College of Marine Studies, University of Delaware, 700 Pilottown Road, Lewes, Delaware 19958, USA 2Hollings Marine Laboratory, University of Charleston, 205 Fort Johnson, Charleston, South Carolina 29412, USA 3Department of Biology, University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada 4Department of Microbiology, University of Tennessee, 1414 West Cumberland, Knoxville, Tennessee 37996, USA 5Institute of Marine Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA ABSTRACT: The effects of iron on phytoplankton community structure in ‘High Nutrient Low Chlorophyll’ regions of the ocean have been examined using both shipboard batch cultures (growouts) and open ocean mesoscale fertilization experiments. The addition of iron in these areas frequently results in a shift from communities dominated by small non-siliceous species towards ones dominated by larger diatoms. We used a new shipboard continuous culture experimental design in iron-limited Peru upwelling waters to examine shifts in phytoplankton structure and their bio- geochemical consequences following simulated upwelled iron inputs. By allowing the added iron to pre-equilibrate with natural seawater ligands, we were able to supply iron in realistic chemical spe- cies at rates and concentrations similar to those found in upwelled waters off Peru. The community shifted strongly from cyanobacteria towards diatoms, and the extent of this shift was proportional to the increase in iron supply. -
Role of Biogenic Silica in the Removal of Iron from the Antarctic Seas
ARTICLE Received 4 Nov 2012 | Accepted 3 May 2013 | Published 10 Jun 2013 DOI: 10.1038/ncomms2981 Role of biogenic silica in the removal of iron from the Antarctic seas Ellery D. Ingall1,*, Julia M. Diaz1,*,w, Amelia F. Longo1, Michelle Oakes1,w, Lydia Finney2, Stefan Vogt2, Barry Lai2, Patricia L. Yager3, Benjamin S. Twining4 & Jay A. Brandes5 Iron has a key role in controlling biological production in the Southern Ocean, yet the mechanisms regulating iron availability in this and other ocean regions are not completely understood. Here, based on analysis of living phytoplankton in the coastal seas of West Antarctica, we present a new pathway for iron removal from marine systems involving structural incorporation of reduced, organic iron into biogenic silica. Export of iron incorpo- rated into biogenic silica may represent a substantial unaccounted loss of iron from marine systems. For example, in the Ross Sea, burial of iron incorporated into biogenic silica is conservatively estimated as 11 mmol m À 2 per year, which is in the same range as the major bioavailable iron inputs to this region. As a major sink of bioavailable iron, incorporation of iron into biogenic silica may shift microbial population structure towards taxa with relatively lower iron requirements, and may reduce ecosystem productivity and associated carbon sequestration. 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, USA. 2 Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA. 3 Department of Marine Sciences, University of Georgia, 220 Marine Sciences Building, Athens, Georgia 30602, USA.