Malus) Collection and Assessment of the Crabapple Slope

Total Page:16

File Type:pdf, Size:1020Kb

Malus) Collection and Assessment of the Crabapple Slope University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 2019 Evaluation of the Crabapple (Malus) Collection and Assessment of the Crabapple Slope Micah Christensen University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Part of the Horticulture Commons Recommended Citation Christensen, Micah, "Evaluation of the Crabapple (Malus) Collection and Assessment of the Crabapple Slope" (2019). Internship Program Reports. 40. https://repository.upenn.edu/morrisarboretum_internreports/40 An independent study project report by The Charles C. Holman Endowed Rose and Flower Garden Intern (2018-2019) This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/40 For more information, please contact [email protected]. Evaluation of the Crabapple (Malus) Collection and Assessment of the Crabapple Slope Abstract This project began in response to space on the slope for more crabapple trees and a need to evaluate the current crabapple collection. As such, this project examined the collection as a whole with special attention to the slope. The Morris Arboretum had 48 crabapple trees as of 2018. The vast majority were planted in two locations: the slope by the rose garden and on the farm between the community garden and the executive director’s residence. The initial examination of the collection showed only two native crabapple specimens (Malus coronaria) both with a provenance of Maryland. Propagation of a tree with more local provenance was done to improve and expand the Malus collection. The four parts to this project included development and implementation of evaluation criteria, soil testing of the slope, recommendations of crabapple cultivars to fill empty spaces on the slope, and propagation of a native crabapple (Malus coronaria) with local provenance Disciplines Horticulture Comments An independent study project report by The Charles C. Holman Endowed Rose and Flower Garden Intern (2018-2019) This report is available at ScholarlyCommons: https://repository.upenn.edu/morrisarboretum_internreports/40 TITLE: Evaluation of the Crabapple (Malus) Collection and Assessment of the Crabapple Slope AUTHOR: Micah Christensen The Charles C. Holman Endowed Rose and Flower Garden Intern DATE: March 6, 2019 ABSTRACT: This project began in response to space on the slope for more crabapple trees and a need to evaluate the current crabapple collection. As such, this project examined the collection as a whole with special attention to the slope. The Morris Arboretum had 48 crabapple trees as of 2018. The vast majority were planted in two locations: the slope by the rose garden and on the farm between the community garden and the executive director’s residence. The initial examination of the collection showed only two native crabapple specimens (Malus coronaria) both with a provenance of Maryland. Propagation of a tree with more local provenance was done to improve and expand the Malus collection. The four parts to this project included development and implementation of evaluation criteria, soil testing of the slope, recommendations of crabapple cultivars to fill empty spaces on the slope, and propagation of a native crabapple (Malus coronaria) with local provenance. 1 Evaluation of the Crabapple (Malus) Collection and Assessment of the Crabapple Slope TABLE OF CONTENTS ABSTRACT………………………………………………………………………………………1 BACKGROUND...……………………………………………………………………………….3 METHODS…………………………………………………………………………………….....3 Evaluation of the Collection……………………………………………………………..3 Propagation of Malus coronaria………………………………………………………...4 Crabapple Slope Soil Test……………………………………………………….………7 RESULTS and DISCUSSION…...……………………………………………………………...5 Evaluation of the Collection……………………………………………………………..5 Crabapple Slope Soil Test……………………………………………………………….7 Recommended Cultivars for the Crabapple Slope…………………………………….7 Propagation of Malus coronaria………………………………………………………...9 CONCLUSION and RECOMMENDATIONS……………..……………………………….....9 Recommendations for the Crabapple Slope…………………………………………..10 ACKNOWLEDGEMENTS……………………………………………………………………13 WORKS CITED…………………………………………………………………..……………14 APPENDIX…………………………………………………..…………………………….……15 Recommended Sources for Malus ‘Rambo’ Interpretive Signs……………………..15 Figures…………………………………………………………………………………...15 Tables……………………………………………………………………………………16 2 BACKGROUND Crabapples are in the genus Malus along with common culinary apples. The difference between crabapples and apples is simply size. Crabapple trees produce smaller fruit than apple trees. Generally, two inches is considered the cutoff between crabapples and apples (Hinkamp). The Morris Arboretum’s Malus collection included 48 trees in 2018 including: ‘Rambo’ (a culinary apple), many ornamental crabapples, some straight species crabapples, and two native wild collected Malus coronaria hybrids. The vast majority were planted in two locations: the slope by the rose garden and on the farm between the community garden and the executive director’s residence. An initial look at the collection to form the plans for this project showed a lack of native crabapples (Malus coronaria). Our only specimens were two very young Malus coronaria hybrids with a provenance of Beltsville, Maryland. Since Malus coronaria is native to southeastern Pennsylvania as well, this project included a wild collection from Willistown Township, Pennsylvania to improve and expand the Malus collection. Nearly all of the dwarf ornamental cultivars are growing on display for the public on the slope. When the slope was designed, cultivars noted for high disease resistance were selected; however, now it has become apparent that many of the cultivars are either less resistant in our area or the diseases have adapted significantly. This presented an opportunity to begin evaluating our collection. In addition, the wet weather throughout 2018 increased disease pressure making it clear which cultivars truly had high disease resistance—unfortunately this included only a few trees on the slope. The evaluation results were used to help inform new cultivar recommendations. In preparation for planting additional crabapples, this project included testing the soil on the crabapple slope. METHODS Evaluation of the Collection Evaluation criteria and methods had to be developed simultaneously with conducting the first evaluation of the collection since the crabapple trees were already losing their leaves due to disease when this project began in mid-August 2018. This led to differences in the data collected for the first evaluations compared to the final evaluations. For example, the first two evaluations recorded only the estimated percentage of disease covering an average leaf and the estimated percentage of canopy coverage or leaves still left on the tree. Since ornamental crabapples tend to be grown almost entirely for their spring flowers, and the slope is intended to showcase disease resistant cultivars, the crabapple collection was evaluated for categories related to flower quality, disease and pest resistance, and aesthetic fruit value. Early on this was recorded and evaluated as flower quality, fruit quality, fruit color, aesthetic foliage value, overall disease and pest resistance, and overall specimen health. The evaluation criteria were later streamlined to hopefully allow the whole collection to be evaluated in just a couple hours using a rubric with just four categories developed over the course of several evaluations. 3 Propagation of Malus coronaria Propagating a native wild crabapple with local provenance first required finding a nearby Malus coronaria tree. Tim Block, Ph.D., director of botany at Morris Arboretum, was consulted and knew of three potential locations. One location was along the Wissahickon Trail between Dekalb Pike (US 202) and North Wales Road—probably around GPS coordinates 40.186333, - 75.275833. Another location was along the edge of a field along the Perkiomen Creek just upstream from the East Greenville Water Authority facility at approximately 40.409038, - 75.521107. The third location was a parking lot for a soccer field by Willisbrook Preserve in Willistown Township. Due to unforeseen circumstances, Dr. Block was unable to come on the collection trip. To avoid possibly collecting from the wrong crabapple tree, the third location was chosen. The tree was unmistakable since it was growing by itself on the edge of a soccer field parking lot by Willisbrook Preserve (Photo 1). Plenty of crabapple fruits were collected along with two small branches for herbarium specimens. The collection form (Figure 1) is included in the APPENDIX. Other Malus species were noted in the area and likely pollinated the collected fruit, so the resulting trees from this propagation project have been accessioned as Malus coronaria hybrids. The branches were placed in a field press and later given to Dr. Block for mounting. Once collected, the fruits were placed in a plastic bag for partial fermentation. Initially, the fruits did not begin fermenting likely because they were stored outside in the cold. To speed up the process, the fruits were brought inside and some water was added to the bag. Once the fruits began softening, they were mushed inside the bag and fermented about a week longer. The seeds were removed and cleaned with direction from Shelley Dillard, Morris Arboretum propagator. Unfortunately, there Photo 1. Wild Malus Coronaria does not seem to be a good way to clean crabapple
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Method for Producing Methacrylic Acid And/Or Ester Thereof
    (19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials.
    [Show full text]
  • Osher Lifelong Learning Institute
    USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions)
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • Northstar Fire Department, Fire Resistant Landscaping Plant List
    Northstar Fire Department, Fire Resistant Landscaping Plant List Many common plants naturally resist fire and can even slow its spread. In general, irrigated and well maintained leafy plants burn slowly. By replacing highly flammable vegetation with these fire resistant recommended species, you can significantly improve the statistical survivability of your home when a wildfire threatens. Courtesy of the “Villager Nursery” in Truckee, this list of fire resistive plants should be considered when enhancing or adding landscape. Here are some other key components to remember when selecting appropriate fire resistant landscaping plants. Choose plants that don’t produce much litter such as dead branches and twigs Plants that produce oils, resins or waxes should be avoided When planting from the approved list, appropriately space plants to prevent fire spread Never plant under conifer trees, this can create a ladder effect which allows smaller ground fires the ability to transfer into larger trees creating crown fires To help ensure their fire resistance, plants must be maintained, watered, and pruned. Routine care will provide you with an attractive defensible space landscape and help ensure the survival of your property in the event of a wildfire. Northstar Fire Department enforces both State and District fire codes that may directly affect your landscape. Northstar Fire Department recommends that prior to changing your landscape you consult with us in order to make sure your property will be compliant with applicable fire codes. Trees Common Name Scientific Name Please note that there Apple Malus spp. may be other vegetative Bigtooth Maple Acer grandidentatum species that are Cherry Prunus spp.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • A Small Molecule but Important for Salt Stress Tolerance in Plants
    Review Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants Haoshuang Zhan 1,†, Xiaojun Nie 1,†, Ting Zhang 1, Shuang Li 1, Xiaoyu Wang 1, Xianghong Du 1, Wei Tong 1,* and Weining Song 1,2,* 1 State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China; [email protected] (H.Z.); [email protected] (X.N.); [email protected] (T.Z.); [email protected] (S.L.); [email protected] (W.X.); [email protected] (X.D.) 2 ICARDA-NWSUAF Joint Research Center for Agriculture Research in Arid Areas, Yangling 712100, China * Corresponding authors: [email protected] (W.T.); [email protected] (W.S.); Tel.: +86-29-8708-2984 (W.S.); Fax: +86-29-8708-2203 (W.S.) † These authors contributed equally to this work. Received: 1 January 2019; Accepted: 4 February 2019; Published: 7 February 2019 Abstract: Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress.
    [Show full text]
  • Malussylvestris Family: Rosaceae Apple
    Malus sylvestris Family: Rosaceae Apple Apple (Malus spp.) consists of 30+ species that occur on both sides of the Atlantic in northern temperate zones. Its wood can be confused with pear (Pyrus spp.) and other “fruitwoods” in the rose family (Rosaceae). Malus is the classical Latin name for apple. Apple hybridizes with North American crab apples. Malus angustifolia-American crab apple, buncombe crab apple, crab apple, crabtree, narrowleaf crab, narrowleaf crab apple, southern crab, southern crab apple, wild crab, wild crab apple Malus coronaria-Alabama crab, Allegheny crab, American crab, American crab apple, Biltmore crab apple, Buncombe crab, crab, crab apple, Dawson crab, Dunbar crab, fragrant crab, garland tree, lanceleaf crab apple, Missouri crab, sweet crab apple, sweet-scented crab, sweet wild crab, wild crab, wild sweet crab Malus fusca-crab apple, Oregon crab, Oregon crab apple, Pacific crab apple, western crab apple, wild crab apple Malus ioensis-Bechel crab, crab apple, Iowa crab, Iowa crab apple, prairie crab, prairie crab apple, wild crab, wild crab apple Malus sylvestris-apple, common apple, wild apple. Distribution Apple is a cultivated fruit tree, persistent, escaped and naturalized locally across southern Canada, in eastern continental United States, and from Washington south to California. Native to Europe and west Asia. Apple grows wild in the southern part of Great Britain and Scandinavia and is found throughout Europe and southwestern Asia. It is planted in most temperate climates The Tree The tree rarely reaches 30 ft (9 m), with a small crooked bole to 1 ft (0.3 m) in diameter. The Wood General Apple wood has a reddish gray heartwood and light reddish sapwood (12 to 30 rings of sapwood).
    [Show full text]
  • Planting Guide Big O Wild Crabapple
    PLANTING GUIDE ‘BIG O’ WILD CRABAPPLE Malus coronaria (L.) USDA-NRCS Jimmy Carter PMC Americus, Georgia SPECIES: Malus coronaria (L.) P. Mill PLANT SYMBOL: MAC05 RELEASE NAME: ‘Big O’ GENERAL INFORMATION: Wild crabapple is a native tree which produces attractive blooms in spring and valuable fruit for wildlife in the fall. The Jimmy Carter Plant Materials Center has released an outstanding line of wild crabapple called Big O. DESCRIPTION: ‘Big O’ is a small deciduous tree that grows 20-30 feet tall from a slender trunk. The leaves are elliptic lanceolate shaped with a wavy margin. The blossom petals are pink/white fading to whitish. The normal blooming period in Americus is mid-late March. The fruit is a roundish green pome maturing to greenish yellow. Fruits normally begin maturing in November obtaining a size approximately 1 ½ inches in diameter. Big O fruit exhibits several levels of maturity into the winter season; some fruit will be firm while others are drying or rotting. USE: The primary use of Big O is wildlife habitat enhancement. It provides food and cover as a general wildlife plant but is especially suited to providing abundant crops of fruit for deer consumption. ADAPTATION: Big O shows potential adaptation further north but is primarily adapted to the piedmont and coastal plain of the southeastern United States. ENVIRONMENTAL CONCERNS: Big O is a native crabapple from Floyd County, Georgia and has shown no weedy or invasive characteristics. Big O was rated as OK to Release in the Environmental Evaluation of Plant Materials Releases Form. ESTABLISHMENT: The first step in establishment of Big O is fruit collection.
    [Show full text]
  • What's in Bloom
    WHAT’S IN BLOOM April 7, 2014 5 4 6 2 7 1 9 8 3 12 10 11 1 Mertensia virginica 5 Viburnum x carlcephalum 9 Malus ‘Hopa’ Virginia Bluebells Fragrant Snowball Flowering Crabapple 2 Neviusia alabamensis 6 Prunus x serrulata ‘Shirotae’ 10 Helleborus x hybridus Alabama Snow Wreath Mt. Fuji Cherry Hellebore 3 Cercis canadensis 7 Stachyurus praecox 11 Fruit Orchard Redbud Stachyurus Apple cultivars 4 Camellia japonica 8 Rhododendron hyperythrum 12 Cercis chinensis Japanese Camellia Rhododendron Chinese Redbud WHAT’S IN BLOOM April 7, 2014 BLOMQUIST GARDEN OF NATIVE PLANTS Amelanchier arborea Common Serviceberry Sanguinaria canadensis Bloodroot Cornus florida Flowering Dogwood Stylophorum diphyllum Celandine Poppy Thalictrum thalictroides Rue Anemone Fothergilla major Fothergilla Trillium decipiens Chattahoochee River Trillium Hepatica nobilis Hepatica Trillium grandiflorum White Trillium Hexastylis virginica Wild Ginger Hexastylis minor Wild Ginger Trillium pusillum Dwarf Wakerobin Illicium floridanum Florida Anise Tree Trillium stamineum Blue Ridge Wakerobin Malus coronaria Sweet Crabapple Uvularia sessilifolia Sessileleaf Bellwort Mertensia virginica Virginia Bluebells Pachysandra procumbens Allegheny spurge Prunus americana American Plum DORIS DUKE CENTER GARDENS Camellia japonica Japanese Camellia Pulmonaria ‘Diana Clare’ Lungwort Cercis canadensis Redbud Prunus persica Flowering Peach Puschkinia scilloides Striped Squill Cercis chinensis Redbud Sanguinaria canadensis Bloodroot Clematis armandii Evergreen Clematis Spiraea prunifolia Bridalwreath
    [Show full text]
  • Malus Tschonoskii Flowering Crab
    http://vdberk.demo-account.nl/trees/malus-tschonoskii/ Rosaceae Malus Malus tschonoskii Flowering Crab Height 8 - 10 (12) m Crown broad pyramidal to ovoid, half-open crown Bark and branches hairless, dark brown Leaf oval to elliptical, felt-like grey-green, 7 - 11 cm Attractive autumn colour yellow, orange, red, purple Flowers white, Ø 3 - 4 cm, not very remarkable, May Fruits few, yellowish-brown, Ø 2 - 3 cm Spines/thorns none Toxicity non-toxic (usually) Soil type nutritious, well drained soil Paving tolerates paving Winter hardiness 6a (-23,3 to -20,6 °C) Wind resistance good, susceptible to sea wind Wind / frost / salt resistant to frost (WH 1 - 6) Fauna tree valuable for bees (honey plant), provides food for birds Application avenues and broad streets, parks, squares, theme parks, cemeteries, industrial areas, large gardens Type/shape clearstem tree, multi-stem tree, specimen tree Origin Japan A type that occurs in the wild in Japan, used more for its decorative leaves than for the flowers or fruit. Grows vertically with a straight main trunk. The winter buds are a remarkable brownish-red colour and glossy. In the spring the young leaves emerge almost white. Once they are fully grown only the underside remains a remarkable light grey. The leaves are rough and slightly lobed. No other ornamental apple tree has such exceptional autumnal colours as this. With its many shades, from purple and copper through orange to yellow, the tree is a real eye-catcher in the autumn. The (fragrant) flowers and the fruits are much less spectacular than those of the other ornamental apple trees.
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]