A Collection of Problems in Differential Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 2: the Multiplication of Polynomials
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 2 M1 ALGEBRA II Lesson 2: The Multiplication of Polynomials Student Outcomes . Students develop the distributive property for application to polynomial multiplication. Students connect multiplication of polynomials with multiplication of multi-digit integers. Lesson Notes This lesson begins to address standards A-SSE.A.2 and A-APR.C.4 directly and provides opportunities for students to practice MP.7 and MP.8. The work is scaffolded to allow students to discern patterns in repeated calculations, leading to some general polynomial identities that are explored further in the remaining lessons of this module. As in the last lesson, if students struggle with this lesson, they may need to review concepts covered in previous grades, such as: The connection between area properties and the distributive property: Grade 7, Module 6, Lesson 21. Introduction to the table method of multiplying polynomials: Algebra I, Module 1, Lesson 9. Multiplying polynomials (in the context of quadratics): Algebra I, Module 4, Lessons 1 and 2. Since division is the inverse operation of multiplication, it is important to make sure that your students understand how to multiply polynomials before moving on to division of polynomials in Lesson 3 of this module. In Lesson 3, division is explored using the reverse tabular method, so it is important for students to work through the table diagrams in this lesson to prepare them for the upcoming work. There continues to be a sharp distinction in this curriculum between justification and proof, such as justifying the identity (푎 + 푏)2 = 푎2 + 2푎푏 + 푏 using area properties and proving the identity using the distributive property. -
James Clerk Maxwell
James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Notes on Calculus II Integral Calculus Miguel A. Lerma
Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus. -
Act Mathematics
ACT MATHEMATICS Improving College Admission Test Scores Contributing Writers Marie Haisan L. Ramadeen Matthew Miktus David Hoffman ACT is a registered trademark of ACT Inc. Copyright 2004 by Instructivision, Inc., revised 2006, 2009, 2011, 2014 ISBN 973-156749-774-8 Printed in Canada. All rights reserved. No part of the material protected by this copyright may be reproduced in any form or by any means, for commercial or educational use, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Instructivision, Inc., P.O. Box 2004, Pine Brook, NJ 07058. Instructivision, Inc., P.O. Box 2004, Pine Brook, NJ 07058 Telephone 973-575-9992 or 888-551-5144; fax 973-575-9134, website: www.instructivision.com ii TABLE OF CONTENTS Introduction iv Glossary of Terms vi Summary of Formulas, Properties, and Laws xvi Practice Test A 1 Practice Test B 16 Practice Test C 33 Pre Algebra Skill Builder One 51 Skill Builder Two 57 Skill Builder Three 65 Elementary Algebra Skill Builder Four 71 Skill Builder Five 77 Skill Builder Six 84 Intermediate Algebra Skill Builder Seven 88 Skill Builder Eight 97 Coordinate Geometry Skill Builder Nine 105 Skill Builder Ten 112 Plane Geometry Skill Builder Eleven 123 Skill Builder Twelve 133 Skill Builder Thirteen 145 Trigonometry Skill Builder Fourteen 158 Answer Forms 165 iii INTRODUCTION The American College Testing Program Glossary: The glossary defines commonly used (ACT) is a comprehensive system of data mathematical expressions and many special and collection, processing, and reporting designed to technical words. -
Number Theory
“mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87 4 Number Theory Number theory is the study of the integers. Why anyone would want to study the integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . Which one don’t you understand? Sec- ond, what practical value is there in it? The mathematician G. H. Hardy expressed pleasure in its impracticality when he wrote: [Number theorists] may be justified in rejoicing that there is one sci- ence, at any rate, and that their own, whose very remoteness from or- dinary human activities should keep it gentle and clean. Hardy was specially concerned that number theory not be used in warfare; he was a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory underlies modern cryptography, which is what makes secure online communication possible. Secure communication is of course crucial in war—which may leave poor Hardy spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms. Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in Chapters 2 and 3. Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set of integers, Z. 4.1 Divisibility The nature of number theory emerges as soon as we consider the divides relation a divides b iff ak b for some k: D The notation, a b, is an abbreviation for “a divides b.” If a b, then we also j j say that b is a multiple of a. -
The Mean Value Theorem Math 120 Calculus I Fall 2015
The Mean Value Theorem Math 120 Calculus I Fall 2015 The central theorem to much of differential calculus is the Mean Value Theorem, which we'll abbreviate MVT. It is the theoretical tool used to study the first and second derivatives. There is a nice logical sequence of connections here. It starts with the Extreme Value Theorem (EVT) that we looked at earlier when we studied the concept of continuity. It says that any function that is continuous on a closed interval takes on a maximum and a minimum value. A technical lemma. We begin our study with a technical lemma that allows us to relate 0 the derivative of a function at a point to values of the function nearby. Specifically, if f (x0) is positive, then for x nearby but smaller than x0 the values f(x) will be less than f(x0), but for x nearby but larger than x0, the values of f(x) will be larger than f(x0). This says something like f is an increasing function near x0, but not quite. An analogous statement 0 holds when f (x0) is negative. Proof. The proof of this lemma involves the definition of derivative and the definition of limits, but none of the proofs for the rest of the theorems here require that depth. 0 Suppose that f (x0) = p, some positive number. That means that f(x) − f(x ) lim 0 = p: x!x0 x − x0 f(x) − f(x0) So you can make arbitrarily close to p by taking x sufficiently close to x0. -
Curve Sketching and Relative Maxima and Minima the Goal
Curve Sketching and Relative Maxima and Minima The Goal The purpose of the first derivative sign diagram is to indicate where a function is increasing and decreasing. The purpose of this is to identify where the relative maxima and minima are, since we know that if a function switches from increasing to decreasing at some point and remains continuous there it has to have a relative maximum there (likewise for switching in the other direction for a relative minimum). This is known as the First Derivative Test. It is possible to come up with functions that are NOT continuous at a certain point and may not even switch direction but still have a relative maximum or minimum there, but we can't really deal with those here. Plot x - Floor x , x, 0, 4 , AspectRatio ® Automatic 1.0 0.8 @ @ D 8 < D 0.6 0.4 0.2 1 2 3 4 The purpose of the second derivative sign diagram is to fill in the shape of the function a little more for sketching purposes, since changes in curvature happen at different locations than changes in direction and are distinctive features of the curve. Addition- ally, in certain circumstances (when the second derivative exists and is not zero) the sign of the second derivative at a critical value will also indicate whether there is a maximum there (downward curvature, f''(x) < 0) or a minimum (upward curvature, f''(x) > 0). This is known as the Second Derivative Test. Also, the change in direction of the curvature also corresponds to the locations of the steepest slope, which turns out to be useful in certain applications. -
Chapter 9 Optimization: One Choice Variable
RS - Ch 9 - Optimization: One Variable Chapter 9 Optimization: One Choice Variable 1 Léon Walras (1834-1910) Vilfredo Federico D. Pareto (1848–1923) 9.1 Optimum Values and Extreme Values • Goal vs. non-goal equilibrium • In the optimization process, we need to identify the objective function to optimize. • In the objective function the dependent variable represents the object of maximization or minimization Example: - Define profit function: = PQ − C(Q) - Objective: Maximize - Tool: Q 2 1 RS - Ch 9 - Optimization: One Variable 9.2 Relative Maximum and Minimum: First- Derivative Test Critical Value The critical value of x is the value x0 if f ′(x0)= 0. • A stationary value of y is f(x0). • A stationary point is the point with coordinates x0 and f(x0). • A stationary point is coordinate of the extremum. • Theorem (Weierstrass) Let f : S→R be a real-valued function defined on a compact (bounded and closed) set S ∈ Rn. If f is continuous on S, then f attains its maximum and minimum values on S. That is, there exists a point c1 and c2 such that f (c1) ≤ f (x) ≤ f (c2) ∀x ∈ S. 3 9.2 First-derivative test •The first-order condition (f.o.c.) or necessary condition for extrema is that f '(x*) = 0 and the value of f(x*) is: • A relative minimum if f '(x*) changes its sign y from negative to positive from the B immediate left of x0 to its immediate right. f '(x*)=0 (first derivative test of min.) x x* y • A relative maximum if the derivative f '(x) A f '(x*) = 0 changes its sign from positive to negative from the immediate left of the point x* to its immediate right. -
A Brief Tour of Vector Calculus
A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0. -
Differentiation Rules (Differential Calculus)
Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below. -
APPM 1350 - Calculus 1
APPM 1350 - Calculus 1 Course Objectives: This class will form the basis for many of the standard skills required in all of Engineering, the Sciences, and Mathematics. Specically, students will: • Understand the concepts, techniques and applications of dierential and integral calculus including limits, rate of change of functions, and derivatives and integrals of algebraic and transcendental functions. • Improve problem solving and critical thinking Textbook: Essential Calculus, 2nd Edition by James Stewart. We will cover Chapters 1-5. You will also need an access code for WebAssign’s online homework system. The access code can also be purchased separately. Schedule and Topics Covered Day Section Topics 1 Appendix A Trigonometry 2 1.1 Functions and Their Representation 3 1.2 Essential Functions 4 1.3 The Limit of a Function 5 1.4 Calculating Limits 6 1.5 Continuity 7 1.5/1.6 Continuity/Limits Involving Innity 8 1.6 Limits Involving Innity 9 2.1 Derivatives and Rates of Change 10 Exam 1 Review Exam 1 Topics 11 2.2 The Derivative as a Function 12 2.3 Basic Dierentiation Formulas 13 2.4 Product and Quotient Rules 14 2.5 Chain Rule 15 2.6 Implicit Dierentiation 16 2.7 Related Rates 17 2.8 Linear Approximation and Dierentials 18 3.1 Max and Min Values 19 3.2 The Mean Value Theorem 20 3.3 Derivatives and Shapes of Graphs 21 3.4 Curve Sketching 22 Exam 2 Review Exam 2 Topics 23 3.4/3.5 Curve Sketching/Optimization Problems 24 3.5 Optimization Problems 25 3.6/3.7 Newton’s Method/Antiderivatives 26 3.7/Appendix B Sigma Notation 27 Appendix B, -
Critical Points and Classifying Local Maxima and Minima Don Byrd, Rev
Notes on Textbook Section 4.1 Critical Points and Classifying Local Maxima and Minima Don Byrd, rev. 25 Oct. 2011 To find and classify critical points of a function f (x) First steps: 1. Take the derivative f ’(x) . 2. Find the critical points by setting f ’ equal to 0, and solving for x . To finish the job, use either the first derivative test or the second derivative test. Via First Derivative Test 3. Determine if f ’ is positive (so f is increasing) or negative (so f is decreasing) on both sides of each critical point. • Note that since all that matters is the sign, you can check any value on the side you want; so use values that make it easy! • Optional, but helpful in more complex situations: draw a sign diagram. For example, say we have critical points at 11/8 and 22/7. It’s usually easier to evaluate functions at integer values than non-integers, and it’s especially easy at 0. So, for a value to the left of 11/8, choose 0; for a value to the right of 11/8 and the left of 22/7, choose 2; and for a value to the right of 22/7, choose 4. Let’s say f ’(0) = –1; f ’(2) = 5/9; and f ’(4) = 5. Then we could draw this sign diagram: Value of x 11 22 8 7 Sign of f ’(x) negative positive positive ! ! 4. Apply the first derivative test (textbook, top of p. 172, restated in terms of the derivative): If f ’ changes from negative to positive: f has a local minimum at the critical point If f ’ changes from positive to negative: f has a local maximum at the critical point If f ’ is positive on both sides or negative on both sides: f has neither one For the above example, we could tell from the sign diagram that 11/8 is a local minimum of f (x), while 22/7 is neither a local minimum nor a local maximum.