Predisposing Factors for Adrenal Insufficiency

Total Page:16

File Type:pdf, Size:1020Kb

Predisposing Factors for Adrenal Insufficiency The new england journal of medicine review article CURRENT CONCEPTS Predisposing Factors for Adrenal Insufficiency Stefan R. Bornstein, M.D. From the Department of Medicine, Tech- drenal insufficiency — the clinical manifestation of deficient nical University of Dresden, Dresden, Ger- production or action of glucocorticoids — is a life-threatening disorder that many. Address reprint requests to Dr. Bornstein at the Department of Medicine, may result from either primary adrenal failure or secondary adrenal disease Technical University of Dresden, Fetscher- A 1,2 due to impairment of the hypothalamic–pituitary axis. This article focuses on pro- str. 74, 01307 Dresden, Germany, or at viding the practicing clinician with new insights into predisposing factors for adre- [email protected]. nal insufficiency. When and during what situations should a clinician suspect ad- N Engl J Med 2009;360:2328-39. renal insufficiency? What genetic disorders, infections, and medications should be Copyright © 2009 Massachusetts Medical Society. considered? What are the current views on the underlying mechanisms? The cardinal clinical symptoms of adrenocortical insufficiency, as first described by Thomas Addison in 1855,3 include weakness, fatigue, anorexia, and abdominal pain, with orthostatic hypotension, salt craving, and characteristic hyperpigmenta- tion of the skin occurring with primary adrenal failure. The acute syndrome con- stitutes a medical emergency since it may result in a severe hypotensive crisis and clouded sensorium, together with pain in the muscles, joints, or abdomen and fever.1,2 In the diagnostic workup for the disorder, the capacity of the adrenal cortex to respond to corticotropin is tested with the use of the standard short corticotropin test, which measures the serum cortisol level before and 30 or 60 minutes after an intravenous or intramuscular injection of 250 μg of corticotropin.4 An increase in the serum cortisol level to peak concentrations above 500 nmol per liter (18 μg per deciliter) indicates a normal response. The adrenal responsiveness to an exogenous corticotropin challenge is impaired in most cases of secondary adrenal disease. With mild secondary adrenal insufficiency, however, the hypothalamic–pituitary– adrenal axis may appear intact, with a normal response to a corticotropin chal- lenge. Recent evidence suggests that the 1-μg corticotropin stimulation test is more sensitive than the 250-μg corticotropin test for establishing the diagnosis of sec- ondary adrenal insufficiency.5 Once adrenal insufficiency is diagnosed, glucocorticoid replacement is initiated in two or three daily doses; one half to two thirds of the daily dose (15 to 25 mg of hydrocortisone) is given in the morning, in line with the physiologic cortisol-secre- tion pattern. Mineralocorticoid replacement (0.05 to 0.2 mg of fludrocortisone daily as a morning dose) is required only in the case of primary adrenal insufficiency, and dehydroepiandrosterone replacement (25 to 50 mg) remains an optional treatment.1,2 Management of an acute adrenal crisis consists of immediate intravenous ad- ministration of 100 mg of hydrocortisone, followed by 100 to 200 mg of hydrocor- tisone every 24 hours and a continuous infusion of larger volumes of physiologic saline solution (initially 1 liter per hour) under continuous cardiac monitoring. Timely diagnosis and clinical management of this condition are critical, and physicians in all areas of medicine should be aware of the causes, signs, and symptoms that her- ald adrenal insufficiency. 2328 n engl j med 360;22 nejm.org may 28, 2009 Downloaded from www.nejm.org at LIBRARIES OF THE UNIV OF COLORADO on June 22, 2010 . Copyright © 2009 Massachusetts Medical Society. All rights reserved. current concepts may present with late-onset adrenal insufficien- Hereditary Disorders 12-14 Associated with Adrenal cy. Congenital adrenal hypoplasia is usually Insufficiency manifested in early childhood but may not be ap- parent until adolescence or early adulthood.14 Hereditary factors are increasingly recognized as Adrenoleukodystrophy and adrenomyeloneu- playing a critical role in the regulation of the ropathy are two phenotypes of an X-linked reces- hypothalamic–pituitary–adrenal axis.6 Genes that sive disorder that affects 1 in 20,000 males. This have been identif ied as having such a role include disorder is characterized by spastic paralysis as those that encode receptors, transcription factors, well as adrenal insufficiency.1,2,15 Adrenoleuko- and enzymes involved in hormone synthesis or in dystrophy begins in infancy or childhood, whereas the regulation of pituitary-gland, adrenal-gland, adrenomyeloneuropathy usually begins in adoles- or target-cell function (Table 1). In addition, certain cence or early adulthood and has a milder and forms of autoimmune adrenalitis have hereditary slower progression. It is important to realize, how- components, either with an autosomal recessive ever, that adrenal insufficiency may be the only pattern of inheritance (autoimmune polyglandu- sign of the disorder; the diagnosis may be con- lar syndrome 1) or with an autosomal dominant firmed by measurement of very-long-chain fatty pattern involving incomplete penetrance (autoim- acids. This disorder accounts for up to 10% of all mune polyglandular syndrome 2). cases of adrenal insufficiency. Congenital adrenal hyperplasia due to 21- Like hereditary disorders of the adrenal gland, hydroxylase deficiency7 is one of the more com- most genetic defects affecting the pituitary gland mon causes of hereditary adrenal disorders, with cause symptoms early in life; however, once again, the classic form having an overall incidence of clinicians should be aware that the signs and 1 case in 15,000 live births. The carrier frequency symptoms of some of these disorders have a late of classic congenital adrenal hyperplasia is ap- onset. For example, mutations in the gene encod- proximately 1 in 60 persons. Patients with classic ing the pituitary transcription factor paired-like congenital adrenal hyperplasia usually present in homeobox 1 (PROP1) cause a progressive deterio- early childhood with a moderate form known as ration of anterior pituitary function, including simple-virilizing congenital adrenal hyperplasia or adrenal insuff iciency, which necessitates replace- with a severe form that causes salt wasting and ment therapy with hydrocortisone in affected virilization. Nonclassic congenital adrenal hyper- patients at a mean age of 18 years.13 Further- plasia occurs in adolescent girls and women, who more, secondary adrenal insufficiency has been present with hirsutism and infertility. noted in up to 60% of patients with the Prader– Although congenital adrenal hyperplasia is a Willi syndrome.16 The Prader–Willi syndrome is common disorder, pitfalls in coping with stressful the most common cause of obesity related to a situations and preventing an adrenal crisis are in- syndrome (with a prevalence of 1 case in 10,000 frequently considered in routine clinical practice7,8; to 20,000 obese persons) and is associated with in addition, the importance of educating parents a very high rate of sudden death (3%). Hydro- about the management of the disorder can be un- cortisone treatment during the acute illness has derappreciated. Clinicians should take time to ex- been recommended in patients with this syn- plain to the child and his or her family that the drome unless adrenal insufficiency can be ruled daily glucocorticoid regimen must not be inter- out.16 rupted by illness. Missed doses during a minor It has been suggested that numerous other malaise such as a viral infection, particularly one genes play critical roles in the development and that causes vomiting or diarrhea, can lead to shock function of the adrenal and pituitary glands in and death. To prevent this, patients should be in- animal models. Putative genes include morpho- structed to increase the doses of glucocorticoids gens such as wingless and sonic hedgehog,17 during illness, surgery, or other forms of severe growth factors, toll-like receptors, and scavenger stress. molecules involved in cholesterol transport and Most genetic disorders associated with adrenal oxidative stress.18,19 The adrenal stress response insufficiency have characteristic clinical features is impaired in mice with toll-like receptor 2 or that become evident early in life1,2,9-11 (Table 1). 4 deficiency.19 Polymorphisms in the same re- However, persons with some genetic disorders ceptors occur in humans at rates of up to 10%.20 n engl j med 360;22 nejm.org may 28, 2009 2329 Downloaded from www.nejm.org at LIBRARIES OF THE UNIV OF COLORADO on June 22, 2010 . Copyright © 2009 Massachusetts Medical Society. All rights reserved. 2330 Table 1. Genetic Defects Associated with Adrenal Insufficiency. Downloaded fromwww.nejm.org atLIBRARIES OFTHEUNIV OFCOLORADO onJune22, 2010. Primary Adrenal Insufficiency Gene No.* Disorder Clinical Characteristics Enzymes in steroidogenesis and cholesterol metabolism 21-Hydroxylase (CYP21A2) 1589 Congenital adrenal hyperplasia Ambiguous genitalia, hirsutism, presence or absence of salt Copyright © 2009 Massachusetts Medical Society. All rightsreserved. wasting 3 Beta-hydroxysteroid dehydrogenase type II 3284 Congenital adrenal hyperplasia Ambiguous genitalia, premature pubarche, hirsutism, pres- (HSD3B2) ence or absence of salt wasting Steroid 11-beta-hydroxylase (CYP11B1) 1584 Congenital adrenal hyperplasia Virilization, impaired cortisol synthesis, hypertension
Recommended publications
  • Congenital Adrenal Hyperplasia in the Newborn
    The Leo Fung Center for CAH and Disorders of Sex Development Congenital Adrenal Hyperplasia in the Newborn Contents Introduction 1 What is congenital adrenal hyperplasia? 1 Types of CAH 3 Diagnosing CAH in newborns 4 Treating CAH 5 Untreated CAH 7 CAH in children and young adults 8 Frequently asked questions 9 Glossary 11 Resources 13 Acknowledgments 14 Congenital Adrenal Hyperplasia in the Newborn 1 Introduction This handbook will provide you and your family information about congenital adrenal hyperplasia (CAH). While this guide will not answer all of your questions, it will provide basic medical facts that will help you to talk to your doctors. It is important to know that CAH cannot be cured but it can be treated. Your child will need to take medicine for the rest of his or her life. If your child takes this medicine, he or she should have a completely normal life in every way. Successful treatment requires teamwork between you and your doctor. The doctor will monitor your child in order to know what dose of medicine is needed. We ask that you give your baby the medication on the schedule recommended by your doctor. Your family is not alone. The Leo Fung Center for CAH and Disorders of Sex Development (DSD) at University of Minnesota Amplatz Children’s Hospital, provides a large network of support, including medical specialists, therapists and counselors who all have expertise in caring for patients with CAH. What is congenital adrenal hyperplasia? Let’s begin by examining each word. • Congenital means existing at birth (inherited). • Adrenal means that the adrenal glands are involved.
    [Show full text]
  • DOI: 10.4274/Jcrpe.Galenos.2021.2020.0175
    DOI: 10.4274/jcrpe.galenos.2021.2020.0175 Case report A novel SCNN1A variation in a patient with autosomal-recessive pseudohypoaldosteronism type 1 Mohammed Ayed Huneif1*, Ziyad Hamad AlHazmy2, Anas M. Shoomi 3, Mohammed A. AlGhofely 3, Dr Humariya Heena 5, Aziza M. Mushiba 4, Abdulhamid AlSaheel3 1Pediatric Endocrinologist at Najran university hospital, Najran Saudi Arabia. 2 Pediatric Endocrinologist at Al yamammah hospital, , Riyadh, Saudi Arabia. 3 Pediatric Endocrinologist at Pediatric endocrine department,. Obesity, Endocrine, and Metabolism Center, , King Fahad Medical City, Riyadh, Saudi Arabia. 4Clinical Geneticist, Pediatric Subspecialties Department, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia. 5 Research Center, King Fahad Medical City, Riyadh , Saudi Arabia What is already known on this topic ? Autosomal-recessive pseudohypoaldosteronism type 1 (PHA1) is a rare genetic disorder caused by different variations in the ENaC subunit genes. Most of these variations appear in SCNN1A mainly in exon eight, which encodes for the alpha subunit of the epithelial sodium channel ENaC. Variations are nonsense, single-base deletions or insertions, or splice site variations, leading to mRNA and proteins of abnormal length. In addition, a few new missense variations have been reported. What this study adds ? We report a novel mutation [ c.729_730delAG (p.Val245Glyfs*65) ] in the exon 4 of the SCNN1A gene In case of autosomal recessive pseudohypoaldosteronism type 1. Patient with PHA1 requires early recognition, proper treatment, and close follow-up. Parents are advised to seek genetic counseling and plan future pregnancies. proof Abstract Pseudohypoaldosteronism type 1 (PHA1) is an autosomal-recessive disorder characterized by defective regulation of body sodium levels.
    [Show full text]
  • Conduct Protocol in Emergency: Acute Adrenal Insufficiency
    ORIGINAL ARTICLE FARES AND SANTOS Conduct protocol in emergency: Acute adrenal insufficiency ADIL BACHIR FARES1*, RÔMULO AUGUSTO DOS SANTOS2 1Medical Student, 6th year, Faculdade de Medicina de São José do Rio Preto (Famerp), São José do Rio Preto, SP, Brazil 2Degree in Endocrinology and Metabology from Sociedade Brasileira de Endocrinologia e Metabologia (SBEM). Assistant Physician at the Internal Medicine Service of Hospital de Base. Researcher at Centro Integrado de Pesquisa (CIP), Hospital de Base, São José do Rio Preto. Endocrinology Coordinator of the Specialties Outpatient Clinic (AME), São José do Rio Preto, SP, Brazil SUMMARY Introduction: Acute adrenal insufficiency or addisonian crisis is a rare comor- bidity in emergency; however, if not properly diagnosed and treated, it may progress unfavorably. Objective: To alert all health professionals about the diagnosis and correct treatment of this complication. Method: We performed an extensive search of the medical literature using spe- cific search tools, retrieving 20 articles on the topic. Results: Addisonian crisis is a difficult diagnosis due to the unspecificity of its signs and symptoms. Nevertheless, it can be suspected in patients who enter the emergency room with complaints of abdominal pain, hypotension unresponsive to volume or vasopressor agents, clouding, and torpor. This situation may be associated with symptoms suggestive of chronic adrenal insufficiency such as hyperpigmentation, salt craving, and association with autoimmune diseases such as vitiligo and Hashimoto’s thyroiditis. Hemodynamically stable patients Study conducted at Faculdade may undergo more accurate diagnostic methods to confirm or rule out addiso- de Medicina de São José do nian crisis. Delay to perform diagnostic tests should be avoided, in any circum- Rio Preto (Famerp), São José do Rio Preto, SP, Brazil stances, and unstable patients should be immediately medicated with intravenous glucocorticoid, even before confirmatory tests.
    [Show full text]
  • ACUTE ADRENAL INSUFFICIENCY by PAUL FOURMAN, M.D., M.R.C.P
    Postgrad Med J: first published as 10.1136/pgmj.29.330.215 on 1 April 1953. Downloaded from 215 ACUTE ADRENAL INSUFFICIENCY By PAUL FOURMAN, M.D., M.R.C.P. Nuffield Department of Clinical Medicine, University of Oxford In acute adrenal insufficiency we are faced with common in patients whose adrenal insufficiency is the interaction of many factors ; if in trying to due to hypopituitarism than in patients with disentangle them I have cut some knots it is for Addison's disease. the sake of brevity. Addison's disease is characterized by a failure to Acute adrenal insufficiency may result from conserve sodium and we usually think of the crisis sudden loss of adrenal function by haemorrhage, of acute adrenal insufficiency as a condition of thrombosis or ablation. More often it-occurs in a shock brought about by salt depletion. This patient with chronic adrenal insufficiency, either might be true in a patient with Addison's disease in the natural course of the illness or following who is in crisis when he first presents ; in him the an injury such as'infection, operation or exposure. crisis is the climax of a long illness during which Acute adrenal insufficiency is characterized by there has been time for the sodium stores to by copyright. prostration and collapse with low blood pressure become depleted. The sodium depletion may and rapid pulse. It is usually accompanied by represent a stress that released the crisis rather gastro-intestinal symptoms: anorexia, vomiting than the immediate cause of the shock-like state. and diarrhoea, and sometimes abdominal pain and Sodium depletion is not an essential feature of hiccup.
    [Show full text]
  • Lyase Deficiency Due to P.R96W Mutation in the CYP17 Gene in a Brazilian Patient
    clinical case report Combined 17α-hydroxylase/17,20- lyase deficiency due to p.R96W mutation in the CYP17 gene in a Brazilian patient Deficiência combinada de 17α-hidroxilase/17,20 liase devido à mutação p.R96W no gene CYP17 em um paciente brasileiro Fabíola Costenaro1, Ticiana C. Rodrigues1, Claudio E. Kater2, Richard J. Auchus3, Mahboubeh Papari-Zareei3, Mauro A. Czepielewski1 SUMMARY 1 Division of Endocrinology, Congenital adrenal hyperplasia (CAH) resulting from 17α-hydroxylase/17,20-lyase deficiency is Hospital de Clínicas de Porto a rare autosomal recessive disease and the second most common form of CAH in Brazil. We Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), describe the case of a Brazilian patient with CYP17 deficiency (17α-hydroxylase/17,20-lyase de- Porto Alegre, RS, Brazil ficiency) caused by a homozygous p.R96W mutation on exon 1 of the CYP17 gene, an unusual 2 Division of Endocrinology genotype in Brazilian patients with this form of CAH. The patient, raised as a normal female, and Metabolism, Department of Medicine, Escola Paulista sought medical care for lack of pubertal signs and primary amenorrhea at the age of 16 years. At de Medicina, Universidade evaluation, the presence of a 46,XY karyotype, hypertension and hypokalemia were observed. Federal de São Paulo (Unifesp/ We emphasize the recognition of CYP17 deficiency in the differential diagnosis of cases of hy- EPM), São Paulo, SP, Brazil 3 Division of Endocrinology and pergonadotrophic hypogonadism and hypertension in young patients who need specific treat- Metabolism, Department of Internal ment for both situations. Arq Bras Endocrinol Metab. 2010;54(8):744-8 Medicine, University of Texas Southwestern Medical Center, USA SUMÁRIO Correspondence to: A hiperplasia adrenal congênita (HAC), em razão da deficiência de 17α-hidroxilase/17,20-liase, Mauro A.
    [Show full text]
  • Preventable Deaths: Panhypopituitarism and Adrenal Insufficiency
    Preventable Deaths: Panhypopituitarism and adrenal insufficiency. What you need to know What is panhypopituitarism? Your child has been diagnosed with a big scary sounding word, and all you can think is: 'What does this mean? and 'Why have I never heard of this?' Simply put, panhypopituitarism means that your child's pituitary gland does not function properly and as a result, your child is deficient in one or several hormones. Some children have congenital panhypopituitarism, meaning they are born with it. Others have acquired panhypopituitarism following an event such as head trauma, brain tumor surgery, or brain radiation. It is rare enough that is entirely possible, in fact, probable, that you will not initially know anyone else with this disorder. What will my child need? Although the diagnosis and condition can seem intimidating, it is very manageable once you understand what is needed. Unfortunately the condition cannot be cured or reversed, but again, it can be effectively managed. Your child will need to take medications to replace the missing hormones. These might include thyroid hormone, growth hormone, cortisol, and/or possibly others. Your doctor will go over these with you, as dosages vary from child to child. Most medications are taken orally, but growth hormone must be taken by daily injection. Your endocrinologist will work with you and your child to achieve the proper dosages and will guide you in how to administer any necessary medications. Why is it sometimes life threatening? What is adrenal insufficiency? Of the hormone deficiencies your child may have, the most critical is cortisol, also known as the 'stress hormone.' Cortisol is essential for life , and is therefore the central focus of this guide.
    [Show full text]
  • Disorders of the Adrenal Glands
    Disorders of the Adrenal Glands Presley Regional Trauma Center Department of Surgery University of Tennessee Health Science Center Memphis, Tennessee Physiology Cortex • Steroid hormones cortisol, aldosterone and androgens are synthesized • Derived from cholesterol • Three histologic zones – glomerulosa (aldosterone), fasiculata and reticularis Cortisol • Secretion is regulated by hypothalamus (CRH) and the pituitary (ACTH) • Exerts effects on intermediary metabolism through variety of cells and tissues • Stimulates hepatic gluconeogenesis and glycogen synthesis Cortisol • Inhibits protein synthesis, increases protein catabolism and fat lipolysis • Inhibits peripheral uptake of glucose in most tissues (liver, brain and RBCs) • Promote collagen loss and impairment of wound healing (inhibit fibroblast activity) Cortisol • Inhibit bone formation • Inhibit numerous anti-inflammatory actions • Critical for cardiovascular stability Androgens • Synthesized primarily in zona reticularis – DHEA • Peripheral conversion to testosterone and dihydrotestosterone • Account for less than 5% of normal male testosterone production Aldosterone • Regulation of ECF volume • Regulation of Na and K balance • Release is stimulated by renin through renin-angiotensin-aldosterone pathway Adrenal Medulla • Derived from neural crest cells • Principal site for catecholamine synthesis • Only site for the enzyme PNMT • Converts NE to EPI Disorders of the Adrenal Cortex Primary Hyperaldosteronism • Conn syndrome • Responsible for HTN in 8 to 12% of pts • Characterized
    [Show full text]
  • Adrenal Crisis: Still a Deadly Event in the 21St Century Troy H.K
    REVIEW Adrenal Crisis: Still a Deadly Event in the 21st Century Troy H.K. Puar, MBBS, MRCP (UK),a,b Nike M.M.L. Stikkelbroeck, MD, PhD,a Lisanne C.C.J. Smans, MD, PhD,c Pierre M.J. Zelissen, MD, PhD,c Ad. R.M.M. Hermus, MD, PhDa aDivision of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; bDepartment of Endocrinology, Changi General Hospital, Singapore; cDepartment of Internal Medicine and Endocrinology, University Medical Center Utrecht, Utrecht, The Netherlands. ABSTRACT Adrenal crisis is a life-threatening medical emergency, associated with a high mortality unless it is appropriately recognized and early treatment is rendered. Despite it being a treatable condition for almost 70 years, failure of adequate preventive measures or delayed treatment has often led to unnecessary deaths. Gastrointestinal illness is the most common precipitant for an adrenal crisis. Although most patients are educated about “sick day rules,” patients, and physicians too, are often reluctant to increase their gluco- corticoid doses or switch to parenteral injections, and thereby fail to avert the rapid deterioration of the patients’ condition. Therefore, more can be done to prevent an adrenal crisis, as well as to ensure that adequate acute medical care is instituted after a crisis has occurred. There is generally a paucity of studies on adrenal crisis. Hence, we will review the current literature, while also focusing on the incidence, pre- sentation, treatment, prevention strategies, and latest recommendations in terms of steroid dosing in stress situations. Ó 2015 Elsevier Inc. All rights reserved. The American Journal of Medicine (2015) -, --- KEYWORDS: Adrenal crisis; Adrenal insufficiency; Crisis; Emergency DEFINITION AND EPIDEMIOLOGY only if metastatic disease is bilateral, with extensive damage 4 In 1855, Thomas Addison first described patients with to the adrenal glands.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • WES Gene Package Multiple Congenital Anomalie.Xlsx
    Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar,
    [Show full text]
  • Coexpression of ATP-Binding Cassette Proteins ABCG5 and ABCG8 Permits Their Transport to the Apical Surface
    Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface Gregory A. Graf, … , Jonathan C. Cohen, Helen H. Hobbs J Clin Invest. 2002;110(5):659-669. https://doi.org/10.1172/JCI16000. Article Cardiology Mutations in either ATP-binding cassette (ABC) G5 or ABCG8 cause sitosterolemia, an autosomal recessive disorder of sterol trafficking. To determine the site of action of ABCG5 and ABCG8, we expressed recombinant, epitope-tagged mouse ABCG5 and ABCG8 in cultured cells. Both ABCG5 and ABCG8 underwent N-linked glycosylation. When either protein was expressed individually in cells, the N-linked sugars remained sensitive to Endoglycosidase H (Endo H). When ABCG5 and ABCG8 were coexpressed, the attached sugars were Endo H–resistant and neuraminidase-sensitive, indicating that the proteins were transported to the trans-Golgi complex. The mature, glycosylated forms of ABCG5 and ABCG8 coimmunoprecipitated, consistent with heterodimerization of these two proteins. The Endo H–sensitive forms of ABCG5 and ABCG8 were confined to the endoplasmic reticulum (ER), whereas the mature forms were present in non-ER fractions in cultured hepatocytes. Immunoelectron microscopy revealed ABCG5 and ABCG8 on the plasma membrane of these cells. In polarized WIF-B cells, recombinant ABCG5 localized to the apical (canalicular) membrane when coexpressed with ABCG8, but not when expressed alone. To our knowledge this is the first direct demonstration that trafficking of an ABC half-transporter to the cell surface requires the presence of its dimerization partner. Find the latest version: https://jci.me/16000/pdf Coexpression of ATP-binding cassette See the related Commentary beginning on page 605.
    [Show full text]
  • 'Sitosterolemia—10 Years Observation in Two Sisters'
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Sitosterolemia—10 years observation in two sisters Veit, Lara ; Allegri Machado, Gabriella ; Bürer, Céline ; Speer, Oliver ; Häberle, Johannes Abstract: Familial hypercholesterolemia due to heterozygous low‐density lipoprotein‐receptor mutations is a common inborn errors of metabolism. Secondary hypercholesterolemia due to a defect in phytosterol metabolism is far less common and may escape diagnosis during the work‐up of patients with dyslipi- demias. Here we report on two sisters with the rare, autosomal recessive condition, sitosterolemia. This disease is caused by mutations in a defective adenosine triphosphate‐binding cassette sterol excretion transporter, leading to highly elevated plant sterol concentrations in tissues and to a wide range of symp- toms. After a delayed diagnosis, treatment with a diet low in plant lipids plus ezetimibe to block the absorption of sterols corrected most of the clinical and biochemical signs of the disease. We followed the two patients for over 10 years and report their initial presentation and long‐term response to treatment. DOI: https://doi.org/10.1002/jmd2.12038 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-182906 Journal Article Accepted Version Originally published at: Veit, Lara; Allegri Machado, Gabriella; Bürer, Céline; Speer, Oliver; Häberle, Johannes (2019). Sitosterolemia— 10 years observation in
    [Show full text]