Mutation & Mutagenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bio 102 Practice Problems Genetic Code and Mutation
Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5. -
Truncating Mutations in Severe Intellectual Disability
European Journal of Human Genetics (2014) 22, 289–292 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT Expanding the phenotype of IQSEC2 mutations: truncating mutations in severe intellectual disability Frederic Tran Mau-Them1, Marjolaine Willems*,1, Beate Albrecht2, Elodie Sanchez1, Jacques Puechberty1, Sabine Endele3, Anouck Schneider4, Nathalie Ruiz Pallares4,5, Chantal Missirian6, Francois Rivier7, Manon Girard4, Muriel Holder8, Sylvie Manouvrier8, Isabelle Touitou5, Genevieve Lefort4, Pierre Sarda1, Anne Moncla7, Severine Drunat9, Dagmar Wieczorek2 and David Genevieve1 Intellectual disability (ID) is frequent in the general population, with 1 in 50 individuals directly affected worldwide. The multiple etiologies include X-linked ID (XLID). Among syndromic XLID, few syndromes present severe ID associated with postnatal microcephaly and midline stereotypic hand movements. We report on three male patients with ID, midline stereotypic hand movements, hypotonia, hyperkinesia, strabismus, as well as seizures (2/3), and non-inherited and postnatal onset microcephaly (2/3). Using array CGH and exome sequencing we characterised two truncating mutations in IQSEC2, namely two de novo intragenic duplication mapped to the Xp11.22 region and a nonsense mutation in exon 7. We propose that truncating mutations in IQSEC2 are responsible for syndromic severe ID in male patients and should be screened in patients without mutations in MECP2, FOXG1, CDKL5 and MEF2C. European Journal of Human Genetics (2014) 22, 289–292; doi:10.1038/ejhg.2013.113; published online 15 May 2013 Keywords: syndromic X-linked intellectual disability; microcephaly; IQSEC2-truncating mutations INTRODUCTION native to the south of France. Pregnancy was uneventful. The boy was born at Intellectual disability (ID) is defined by substantial limitations in 37 ½ weeks of gestation full term by caesarean section due to an abnormal cognitive functioning (intellectual quotient o70) coupled with a deficit presentation. -
Variegate Porphyria: Identification of a Nonsense Mutation in The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MUTATION REPORTS Variegate Porphyria: Identification of a Nonsense Mutation in the Protoporphyrinogen Oxidase Gene Jorge Frank, Frank K. Jugert,* Katrin Kalka,† Gu¨nter Goerz,† Hans F. Merk,* and Angela M. Christiano Department of Dermatology, Columbia University, New York, New York, U.S.A.; *Department of Dermatology, University Clinic of the RWTH, Aachen, Germany; †Department of Dermatology, Heinrich Heine University, Du¨sseldorf, Germany The porphyrias are disorders of porphyrin metabolism protoporphyrinogen oxidase gene, resulting in the substi- that result from inherited or acquired aberrations in the tution of glutamic acid by a nonsense codon, designated control of the heme biosynthetic pathway. Variegate E133X. Our investigation establishes that a nonsense porphyria is characterized by a partial reduction in the mutation in the protoporphyrinogen oxidase gene is activity of protoporphyrinogen oxidase. In this study, we the underlying mutation in this family with variegate identified the first nonsense mutation in a family with porphyria. Key words: bullous diseases/genodermatosis/photo- variegate porphyria. The mutation consisted of a previ- sensitivity/porphyrin-heme biosynthetic pathway. J Invest ously unreported G-to-T transversion in exon 5 of the Dermatol 110:449–451, 1998 he porphyrias are disorders of heme metabolism resulting in the PPO gene in the clinically affected patient and one of her sons from the inherited or acquired dysregulation of one of by heteroduplex analysis, automated sequencing, and allele specific the eight enzymes that control the porphyrin-heme oligonucleotide (ASO) hybridization. The mutation consisted of a biosynthetic pathway. -
Excess of Rare Novel Loss-Of-Function Variants in Synaptic Genes in Schizophrenia and Autism Spectrum Disorders
Molecular Psychiatry (2014) 19, 872–879 & 2014 Macmillan Publishers Limited All rights reserved 1359-4184/14 www.nature.com/mp ORIGINAL ARTICLE Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders EM Kenny1,3, P Cormican1,3, S Furlong1,3, E Heron1, G Kenny1, C Fahey1, E Kelleher1, S Ennis2, D Tropea1, R Anney1, AP Corvin1, G Donohoe1, L Gallagher1, M Gill1 and DW Morris1 Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P ¼ 0.02). This effect was stronger when analysis was limited to singleton LoF variants (P ¼ 0.0007) and the excess was present in both SZ (P ¼ 0.002) and ASD (P ¼ 0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P ¼ 0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder. -
Molecular Biology and Applied Genetics
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. -
Nonsense and Missense Mutations in Hemophilia A: Estimate of the Relative Mutation Rate at CG Dinucleotides Hagop Youssoufian,* Stylianos E
Am. J. Hum. Genet. 42:718-725, 1988 Nonsense and Missense Mutations in Hemophilia A: Estimate of the Relative Mutation Rate at CG Dinucleotides Hagop Youssoufian,* Stylianos E. Antonarakis,* William Bell,t Anne M. Griffin,4 and Haig H. Kazazian, Jr.* *Genetics Unit, Department of Pediatrics, and tDivision of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore; and tDivision of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill Summary Hemophilia A is an X-linked disease of coagulation caused by deficiency of factor VIII. Using cloned cDNA and synthetic oligonucleotide probes, we have now screened 240 patients and found CG-to-TG transitions in an exon in nine. We have previously reported four of these patients; and here we report the remaining five, all of whom were severely affected. In one patient a TaqI site was lost in exon 23, and in the other four it was lost in exon 24. The novel exon 23 mutation is a CG-to-TG substitution at the codon for amino acid residue 2166, producing a nonsense codon in place of the normal codon for arginine. Simi- larly, the exon 24 mutations are also generated by CG-to-TG transitions, either on the sense strand produc- ing nonsense mutations or on the antisense strand producing missense mutations (Arg to Gln) at position 2228. The novel missense mutations are the first such mutations observed in association with severe hemo- philia A. These results provide further evidence that recurrent mutations are not uncommon in hemophilia A, and they also allow us to estimate that the extent of hypermutability of CG dinucleotides is 10-20 times greater than the average mutation rate for hemophilia A. -
Cancer Genomics Terminology
Cancer Genomics Terminology Acquired Susceptibility Mutation: A mutation in a gene that occurs after birth from a carcinogenic insult. Allele: One of the variant forms of a gene. Different alleles may produce variation in inherited characteristics. Allele Heterogeneity: A phenotype that can be produced by different genetic mechanisms. Amino Acid: The building blocks of protein, for which DNA carries the genetic code. Analytical Sensitivity: The proportion of positive test results correctly reported by the laboratory among samples with a mutation(s) that the laboratory’s test is designed to detect. Analytic Specificity: The proportion of negative test results correctly reported among samples when no detectable mutation is present. Analytic Validity: A test’s ability to accurately and reliably measure the genotype of interest. Apoptosis: Programmed cell death. Ashkenazi: Individuals of Eastern European Jewish ancestry/decent (For example-Germany and Poland). Non-assortative mating occurred in this population. Association: When significant differences in allele frequencies are found between a disease and control population, the disease and allele are said to be in association. Assortative Mating: In population genetics, selective mating in a population between individuals that are genetically related or have similar characteristics. Autosome: Any chromosome other than a sex chromosome. Humans have 22 pairs numbered 1-22. Base Excision Repair Gene: The gene responsible for the removal of a damaged base and replacing it with the correct nucleotide. Base Pair: Two bases, which form a “rung on the DNA ladder”. Bases are the “letters” (Adenine, Thymine, Cytosine, Guanine) that spell out the genetic code. Normally adenine pairs with thymine and cytosine pairs with guanine. -
Increased Transversions in a Novel Mutator Colon Cancer Cell Line
Oncogene (1998) 16, 1125 ± 1130 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 Increased transversions in a novel mutator colon cancer cell line James R Eshleman1,6, P Scott Donover2, Susan J Littman5, Sandra E Swinler2, Guo-Min Li4,7, James D Lutterbaugh2, James KV Willson2, Paul Modrich4, W David Sedwick2, Sanford D Markowitz2 and Martina L Veigl3 1Departments of Pathology; 2Medicine; 3General Medical Sciences and Ireland Cancer Center, University Hospitals of Cleveland and Case Western Reserve University, Suite 200, UCRC II, 11001 Cedar Road, Cleveland, Ohio 44106; 4Department of Biochemistry and Howard Hughes Medical Institute; 5Department of Medicine-Oncology, Duke University Medical Center, Nanaline Duke Building, Durham, North Carolina, 27710 USA We describe a novel mutator phenotype in the Vaco411 In this report we describe the unique speci®city of a colon cancer cell line which increases the spontaneous new mutator defect, which is independent of MMR. mutation rate 10 ± 100-fold over background. This We have previously shown that the Vaco411 colon mutator results primarily in transversion base substitu- cancer cell line displays a moderately (10 ± 100-fold) tions which are found infrequently in repair competent increased spontaneous mutation rate (Eshleman et al., cells. Of the four possible types of transversions, only 1995), and does not exhibit the RER phenotype which three were principally recovered. Spontaneous mutations generally accompanies MMR defects (Eshleman and recovered also included transitions and large deletions, Markowitz, 1995). We now describe the spontaneous but very few frameshifts were recovered. When compared hprt mutations arising in this new colon cancer to known mismatch repair defective colon cancer mutator, and compare these mutations to the repair mutators, the distribution of mutations in Vaco411 is capacity exhibited by cell-free extracts of this cell line. -
CRISPR-Cas9 DNA Base-Editing and Prime-Editing
International Journal of Molecular Sciences Review CRISPR-Cas9 DNA Base-Editing and Prime-Editing Ariel Kantor 1,2,*, Michelle E. McClements 1,2 and Robert E. MacLaren 1,2 1 Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK 2 Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK * Correspondence: [email protected] Received: 14 July 2020; Accepted: 25 August 2020; Published: 28 August 2020 Abstract: Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases. -
Oxidative Damage and Mutagenesis in Saccharomyces Cerevisiae: Genetic Studies of Pathways Affecting Replication Fidelity of 8-Oxoguanine
INVESTIGATION Oxidative Damage and Mutagenesis in Saccharomyces cerevisiae: Genetic Studies of Pathways Affecting Replication Fidelity of 8-Oxoguanine Arthur H. Shockley,* David W. Doo,* Gina P. Rodriguez,* and Gray F. Crouse*,†,1 *Department of Biology and †Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 ABSTRACT Oxidative damage to DNA constitutes a major threat to the faithful replication of DNA in all organisms and it is therefore important to understand the various mechanisms that are responsible for repair of such damage and the consequences of unrepaired damage. In these experiments, we make use of a reporter system in Saccharomyces cerevisiae that can measure the specific increase of each type of base pair mutation by measuring reversion to a Trp+ phenotype. We demonstrate that increased oxidative damage due to the absence of the superoxide dismutase gene, SOD1, increases all types of base pair mutations and that mismatch repair (MMR) reduces some, but not all, types of mutations. By analyzing various strains that can revert only via a specificCG/ AT transversion in backgrounds deficient in Ogg1 (encoding an 8-oxoG glycosylase), we can study mutagenesis due to a known 8-oxoG base. We show as expected that MMR helps prevent mutagenesis due to this damaged base and that Pol h is important for its accurate replication. In addition we find that its accurate replication is facilitated by template switching, as loss of either RAD5 or MMS2 leads to a significant decrease in accurate replication. We observe that these ogg1 strains accumulate revertants during prolonged incubation on plates, in a process most likely due to retromutagenesis. -
Genetics 101: What's in a CDKL5 Mutation?
JULY 21, 2018 Genetics 101: SCN1A Katie Angione, MS CGC Certified Genetic Counselor CHCO Neurology Disclosures: I have no financial interests or relationships to disclose. Objectives 1. Review genetic concepts and terminology 2. Discuss the genetics of Dravet Syndrome 3. Understand how to interpret a genetic testing report Who Are Genetic Counselors? • Master’s-trained health care professionals who combine their knowledge of: - Basic science - Medical genetics - Epidemiological principles - Counseling theory • With their skills in: - Genetic risk assessment - Education - Interpersonal communication and counseling • To provide services to clients and their families for a diverse set of genetic or genomic indications Dravet Syndrome • Seizures beginning in the first year • Developmental delays • Normal development prior to seizure onset • Developmental slowing, plateau, or regression • Other common features: • Movement/ balance issues, orthopedic conditions, growth and nutrition issues, sleeping difficulties, behavioral problems • Incidence of 1:16,000 – 1:20,000 www.dravetfoundation.org Greenwood Genetic Center Genetic Counseling Aids, 2013 Genes and Proteins • A gene is a segment of DNA that codes for a protein • A protein is a molecule that can have many different important roles in the body • provide structure and support • transport materials and sending signals • protect the body from viruses and bacteria • carry out chemical reactions • Proteins are made up of smaller units called amino acids • 20 different types of amino acids • -
DNA Mutation Worksheetkey
Name: ________________________ BIO300/CMPSC300 Mutation - Spring 2016 As you know from lecture, there are several types of mutation: DELETION (a base is lost) INSERTION (an extra base is inserted) Deletion and insertion may cause what’s called a FRAMESHIFT, meaning the reading “frame” changes, changing the amino acid sequence. POINT MUTATION (one base is substituted for another) If a point mutation changes the amino acid, it’s called a MISSENSE mutation. If a point mutation does not change the amino acid, it’s called a SILENT mutation. If a point mutation changes the amino acid to a “stop,” it’s called a NONSENSE mutation. Complete the boxes below. Classify each as either Deletion, Insertion, or Substitution AND as either frameshift, missense, silent or nonsense (hint: deletion or insertion will always be frameshift). Original DNA Sequence: T A C A C C T T G G C G A C G A C T mRNA Sequence: A U G U G G A A C C G C U G C U G A Amino Acid Sequence: MET -TRP- ASN - ARG- CYS - (STOP) Mutated DNA Sequence #1: T A C A T C T T G G C G A C G A C T What’s the mRNA sequence? A U G U A G A A C C G C U G C U G A What will be the amino acid sequence? MET -(STOP) Will there likely be effects? YES What kind of mutation is this? POINT MUTATION- NONSENSE Mutated DNA Sequence #2: T A C G A C C T T G G C G A C G A C T What’s the mRNA sequence? A U G C U G G A A C C G C U G C U G A What will be the amino acid sequence? MET - LEU -GLU– PRO-LEU-LEU Will there likely be effects? YES What kind of mutation is this? INSERTION - FRAME SHIFT Mutated DNA Sequence