Numerical Modeling of Hydrogen Embrittlement A

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Modeling of Hydrogen Embrittlement A NUMERICAL MODELING OF HYDROGEN EMBRITTLEMENT A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Chuanshi Huang May, 2020 NUMERICAL MODELING OF HYDROGEN EMBRITTLEMENT Chuanshi Huang Dissertation Approved: Accepted: Advisor Department Chair Dr. Xiaosheng Gao Dr. Sergio Felicelli Committee Member Dean of the College Dr. Gregory Morscher Dr. Craig Menzemer Committee Member Dean of the Graduate School Dr. Yalin Dong Dr. Marnie Saunders Committee Member Date Dr. Gary L. Doll Committee Member Dr. Chien-Chung Chan ii ABSTRACT This dissertation developed a comprehensive numerical framework for the prediction of hydrogen embrittlement. The framework contains a numerical implementation of the hydrogen diffusion model, a study of hydrogen’s effect on ductile fracture under various stress states, a development of the phase field method for ductile and brittle fracture and the fracture mechanism transition from ductile to brittle caused by hydrogen, and a coupled numerical solution strategy that combines the phase field model with hydrogen diffusion model. The first part of this dissertation uses a unit cell model to study the effect of hydrogen enhanced localized plasticity (HELP) on ductile fracture. The void growth and coalescence of the unit cell is influenced by the initial uniformly hydrogen distribution. The hydrogen redistribution caused by the stress field and plastic strain is observed. The results show that hydrogen reduces the ductility of the material by accelerating void growth and coalescence, and the effect of hydrogen on ductile fracture is strongly influenced by the stress state experienced by the material, as characterized by the stress triaxiality and the Lode parameter. This dissertation presents a phase field model for simulating brittle and ductile fracture. The new developments include the introduction of a degradation function to the yield surface and the modification of the crack driving force function by including the plastic contribution. As the phase field value increases, the yield surface is degraded at the iii same rate as the elastic modulus is, which maintains the integrity of the elasto-plastic constitutive equations. Parameters in the modified crack driving force function include the critical energy release rate and a plastic adjustment factor, which is an exponential function of the plastic strain. The conjoint effect of the plastic adjustment function and the value of the critical energy release rate on the crack driving force reflects the competition between the brittle and ductile fracture mechanisms. A numerical algorithm is proposed to implement the plasticity model with phase field and to solve the coupled system equations monolithically. A strategy using the crack driving force increment to control the size of solution increment is shown to be computationally efficient to assure solution accuracy. Various numerical examples are carried out to demonstrate the capability of the proposed model and to illustrate the influences of model parameters on the simulation results. To modify the phase field model for the simulation of hydrogen embrittlement, a HEDE model is proposed account for hydrogen’s effect on the critical energy release rate, the hydrogen diffusion coefficient and the hydrogen trapping density function are modified as functions of the phase field value, the HELP model is considered in the material constitutive equations. iv ACKNOWLEDGEMENTS First, I would like to express my sincere appreciation to my advisor Dr. Xiaosheng Gao for his continuous support of my study and research. He always has been patient, motivative and inspiring. His guidance helped me throughout the years of my academic and industrial works at the University of Akron. His mentoring trained me to be a better engineer and researcher which with no doubt will continue benefit me in the future. Beside my advisor, I would like to thank the rest of my committee members: Dr. Chien-Chung Chan, Dr. Gary L. Doll, Dr. Gregory Morscher and Dr. Yalin Dong for their time to review my dissertation, and their insightful comments and questions. Additional thanks to Dr. Chang Ye who served as my committee member for my proposal. I also want to thank my colleagues and friends in the group: Dr. Jinyuan Zhai, Dr. Tuo Luo, Clayton Reakes, Chuan Zeng and Guanyue Rao for their helps and advises. they helped me a lot in my research and daily life during this period of time. v TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................ x CHAPTER I. INTRODUCTION ........................................................................................................... 1 1.1 Hydrogen Embrittlement Understanding ................................................................. 1 1.2 Hydrogen transport and trapping ............................................................................. 2 1.3 Hydrogen enhanced localized plasticity................................................................... 3 1.4 Hydrogen enhanced decohesion ............................................................................... 5 1.5 Phase Field Method .................................................................................................. 7 1.6 Fracture mechanisms ................................................................................................ 8 1.7 Research objective ................................................................................................... 9 II. THE EFFECT OF HYDROGEN ON DUCTILE FRACTURE .................................. 12 2.1 Hydrogen Diffusion Formulation ........................................................................... 12 2.2 Unit cell model ....................................................................................................... 15 2.3 HELP effect under different stress triaxialities ...................................................... 19 vi 2.4 HELP effect under different Lode parameters ....................................................... 25 2.5 Summary and conclusions ..................................................................................... 30 III. PHASE FIELD MODELING FOR BRITTLE AND DUCTILE FRACTURE ......... 33 3.1 Geometrical phase field method for ductile fracture.............................................. 34 3.1.1 Phase field modeling ......................................................................................... 34 3.1.2 Degradation function ........................................................................................ 36 3.1.3 Free energy function ......................................................................................... 37 3.2 Plasticity Model and Numerical Algorithm ........................................................... 41 3.3 Finite Element Implementation .............................................................................. 46 3.4 Parameter Studies ................................................................................................... 49 3.4.1 Effect of the Increment Size ............................................................................. 49 3.4.2 Effect of the Critical Energy Release Rate ....................................................... 55 3.4.3 Effects of α ........................................................................................................ 58 3.4.4 Effect of the Yield Stress .................................................................................. 61 3.5 Additional Examples .............................................................................................. 62 3.5.1 Flat specimen without notch ............................................................................. 63 3.5.2 Compact tension specimens .............................................................................. 66 3.6 Summary and Conclusions ..................................................................................... 73 IV. PHASE FIELD MODELING OF HYDROGEN EMBRITTLEMENT ..................... 75 4.1 Hydrogen Transport Coupled with Displacement and Phase Field ....................... 75 vii 4.2 Hydrogen trapping ................................................................................................. 78 4.3 Hydrogen embrittlement modeling ........................................................................ 80 4.4 Yield function......................................................................................................... 81 4.5 Numerical implementation ..................................................................................... 81 4.6 Compact Tension Specimen ................................................................................... 84 4.6.1 Lattice Hydrogen Diffusion and Hydrogen Trapping ...................................... 84 4.6.2 Hydrogen Embrittlement Mechanisms ............................................................. 90 4.7 Double Notched Flat Specimen ............................................................................. 95 4.7.1 Lattice Hydrogen Diffusion and Hydrogen Trapping ...................................... 96 4.7.2 Hydrogen Embrittlement Mechanisms ............................................................. 97 4.8 Conclusions .........................................................................................................
Recommended publications
  • Effect of Hydrogen Embrittlement on Fatigue Life of High Strength Steel
    ISSN: 2455-2631 © April 2019 IJSDR | Volume 4, Issue 4 EFFECT OF HYDROGEN EMBRITTLEMENT ON FATIGUE LIFE OF HIGH STRENGTH STEEL 1 2 Alok Kumar , Manish Vishwakarma 1M.Tech. Scholar, 2Assistant professor Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, Madhya Pradesh, India Abstract: this paper deals with definition of hydrogen embrittlement, causes and mechanism which causes hydrogen diffusion take place in to the base material. Hydrogen embrittlement is responsible for subcritical crack growth and catastrophic failure in material. Hydrogen embrittlement causes due to high hydrogen concentration in the material. Different type of testing has been done to check the strength and properties of material. The microstructure analysis was done by scanning electron microscope (SEM) and transmission electron microscope (TEM) Keywords: High strength steel, Hydrogen embrittlement, SEM, TEM, subcritical crack growth 1. Introduction: Hydrogen embrittlement is a process by which steel become brittle and fracture due to subsequent diffusion of hydrogen in to the metal. During hydrogen embrittlement hydrogen is reacted to the surface of a metal and individual hydrogen atoms diffuse through the metal, because the solubility of hydrogen increases with higher temperatures, high temperature can increase the diffusion of hydrogen. When facilitate by a concentration of hydrogen where there is significantly more hydrogen outside the metal, hydrogen diffusion can also occur at lower temperatures. These individual hydrogen atoms within the metal gradually mixes to form hydrogen molecules, creating pressure from within the metal. This pressure may increases the levels where the metal has reduced ductility, toughness, and tensile strength, up to the point where it cracks initiated.
    [Show full text]
  • Hydrogen Embrittlement of Steel
    OCT 1 2 1951 NBS CIRCULAR ^jj Reference book not to be taken from the Library, Hydrogen Embrittlement of Steel Review of the Literature UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RELATED PUBLICATIONS Heat Treatment and Properties of Iron and Steel This publication presents basic theoretical and practical principles involved in the heat treatment of ferrous metals. The effects of various treatments on the structural and mechanical proper¬ ties of iron and steel are thoroughly discussed, although many theoretical aspects and technical details have been omitted for the sake of simplicity. Subjects presented include properties of iron, alloys of iron and carbon, decomposition of austenite, heat treatment of steels, hardenability, heat treatment of cast iron, nomenclature of steels, recommended heat treat¬ ments, and properties and uses of steels. A list of selected references is also given, and a large number of graphs, tables, and photographs illustrate the text. Order NBS Circular 495, Heat Treatment and Properties of Iron and Steel, 33 pages, from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price: 25 cents. Nickel and Its Alloys This publication is a systematic and readily accessible summary of informa¬ tion about nickel. Information obtained by the Bureau in its own investiga¬ tions is combined with that available in published records of work done elsewhere. Information includes sources of nickel; extraction, recovery, and refining processes; metallography; chemical properties; physical properties; mechanical properties at different temperatures; and casting, fabrication, and miscellaneous processes. Many ferrous and nonferrous alloys are listed, and their properties, such as density, thermal conductivity, tensile strength, magnetic properties, and corrosion resistance are discussed.
    [Show full text]
  • The Effects of Purity and Pressure on Hydrogen Embrittlement of Metallic Materials (ID 149)
    3rd3rd INTERNATIONAL INTERNATIONAL CONFERENCE CONFERENCE ONON HYDROGEN HYDROGEN SAFETY SAFETY AJACCIOAJACCIO –– SEPTEMBERSEPTEMBER 16 16--18th,18th, 2009 2009 The Effects of Purity and Pressure on Hydrogen Embrittlement of Metallic Materials (ID 149) Hervé Barthélémy Overview Introduction to Hydrogen Embrittlement (HE) Causes and Mechanisms Scope of Research Results and Data Test Methods Effects of Pressure Effects of H2 gas purity Issues to Address The world leader in gases for industry, health and the environment 2 Hydrogen Embrittlement in Steels Loss of ductility and deformation capacity in the presence of hydrogen Strongly affects high-strength steels Maximum embrittlement at room temperature (~20°C) Causes hydrogen transport by dislocations The world leader in gases for industry, health and the environment 3 Hydrogen Embrittlement in Steels Factors affecting HE Environment Material properties and surface condition Possible Mechanisms of HE Stress-induced hydride formation Hydrogen-enhanced localized plasticity (HELP) Hydrogen-induced decohesion The world leader in gases for industry, health and the environment 4 Environment Gas purity Pressure Temperature Exposure time (affects diffusion in internal HE) Stress and strain rates The world leader in gases for industry, health and the environment 5 Material Properties related to HE Chemical composition of metal Heat treatment, welding Microstructure Cracks, corrosion pits, and other surface defects The world leader in gases for industry, health and the environment 6 Scope
    [Show full text]
  • Hydrogen Embrittlement of Structural Steels, DOE Hydrogen Program FY
    III.12 Hydrogen Embrittlement of Structural Steels (K) Safety, Codes and Standards, Permitting Jay Keller (Primary Contact), Brian Somerday, Chris San Marchi Technical Targets Sandia National Laboratories P.O. Box 969 The principal target addressed by this project is the Livermore, CA 94550 following (from Table 3.2.2): Phone: (925) 294-3316 E-mail: [email protected] • Pipeline Reliability/Integrity DOE Technology Development Manager: The salient reliability/integrity issue for steel Monterey Gardiner hydrogen pipelines is hydrogen embrittlement. One Phone: (202) 586-1758 particular unresolved issue is the performance of steel E-mail: [email protected] hydrogen pipelines that are subjected to extensive Project Start Date: January 2007 pressure cycling. One of the objectives of this project is Project End Date: Project continuation and to enable safety assessments of steel hydrogen pipelines subjected to pressure cycling through the use of code- direction determined annually by DOE based structural integrity models. This structural Sandia National Laboratories is a multi-program integrity analysis can determine limits on design and laboratory managed and operated by Sandia operating parameters such as the allowable number of Corporation, a wholly owned subsidiary of Lockheed pressure cycles and pipeline wall thickness. Efficiently Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under specifying pipeline dimensions such as wall thickness contract DE-AC04-94AL85000 also affects
    [Show full text]
  • Hydrogen Embrittlement of Metals and Alloys in Combustion Engines
    Review: Hydrogen Embrittlement of Metals and Alloys in Combustion Engines Revisión: Fragilización por hidrógeno de metales y aleaciones en motores de combustión Maricruz Saborío González1, Isaac Rojas Hernandez2 Fecha de recepción: 12 de agosto de 2017 Fecha de aprobación: 24 de octubre de 2017 Saborío González, M; Rojas Hernández, I. Review: Hydrogen Embrittlement of Metals and Alloys in Combustion Engines. Tecnología en Marcha. Vol. 31-2. Abril-Junio 2018. Pág 3-13. DOI: 10.18845/tm.v31i2.3620 1 Investigación en Energías Alternativas, Instituto Costarricense de Electricidad, San José, Costa Rica. Correo electrónico: [email protected] 2 Investigación en Energías Alternativas, Instituto Costarricense de Electricidad, San José, Costa Rica. Correo electrónico: [email protected] Tecnología en Marcha, 4 Vol. 31, N.° 2, Abril-Junio 2018 Palabras clave Fractura por estrés; corrosión; fragilización; adsorción; absorción. Resumen Como acciones ante los retos de la dependencia y agotamiento de los combustibles fósiles, su impacto ambiental y los costos incrementales de transporte, se propone aplicar la técnica de enriquecimiento de motores de combustión interna en vehículos. Como un primer paso, se presenta una revisión para estudiar el efecto de degradación por hidrógeno sobre los materiales comúnmente utilizados para construir motores. Esta revisión apoyará un análisis de factibilidad para determinar si los materiales de los motores de automóviles tienen el potencial de usar combustibles enriquecidos con hidrógeno. Los temas más relevantes de la revisión que fueron incluidos en este artículo son: i) descripción de los materiales actualmente utilizados en la fabricación de motores de combustión interna; ii) nuevos materiales para enriquecimiento con hidrógeno en motores; iii) mecanismos y clasificación de fragilización por hidrógeno; iv) factores que promueven la fragilización y v) estudio de casos de fragilización por hidrógeno.
    [Show full text]
  • Austenitic Stainless Steels: Type 316 (Code 2103)
    Technical Reference on Hydrogen Compatibility of Materials Austenitic Stainless Steels: Type 316 (code 2103) Prepared by: C. San Marchi, Sandia National Laboratories Editors C. San Marchi B.P. Somerday Sandia National Laboratories This report may be updated and revised periodically in response to the needs of the technical community; up-to-date versions can be requested from the editors at the address given below. The success of this reference depends upon feedback from the technical community; please forward your comments, suggestions, criticisms and relevant public- domain data to: Sandia National Laboratories Matls Tech Ref C. San Marchi (MS-9402) 7011 East Ave Livermore CA 94550. This document was prepared with financial support from the Safety, Codes and Standards program element of the Hydrogen, Fuel Cells and Infrastructure program, Office of Energy Efficiency and Renewable Energy; Pat Davis is the manager of this program element. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. IMPORTANT NOTICE WARNING: Before using the information in this report, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Sandia National Laboratories make NO WARRANTIES including, but not limited to, any Implied Warranty or Warranty of Fitness for a Particular Purpose. Sandia National Laboratories will not be liable for any loss or damage arising from use of this information, whether direct, indirect, special, incidental or consequential. Austenitic Stainless Steels Type 316 & 316L Fe-18Cr-13Ni-2.5Mo 1.
    [Show full text]
  • INFLUENCE of DISSOLVED HYDROGEN on the FATIGUE CRACK GROWTH BEHAVIOUR of AISI 4140 STEEL By
    Wayne State University Wayne State University Dissertations 1-1-2014 Influence Of Dissolved Hydrogen On The aF tigue Crack Growth Behaviour Of Aisi 4140 Steel Varun Ramasagara Nagarajan Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Ramasagara Nagarajan, Varun, "Influence Of Dissolved Hydrogen On The aF tigue Crack Growth Behaviour Of Aisi 4140 Steel" (2014). Wayne State University Dissertations. Paper 973. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. INFLUENCE OF DISSOLVED HYDROGEN ON THE FATIGUE CRACK GROWTH BEHAVIOUR OF AISI 4140 STEEL by VARUN RAMASAGARA NAGARAJAN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2014 MAJOR: MATERIALS SCIENCE AND ENGINEERING Approved by: Advisor Date DEDICATION This dissertation work is dedicated to my beloved wife, my lovely mother, my inspiring father, my sweet sister and all my family members and my friends. ii ACKNOWLEDGEMENTS This investigation was carried out under a grant from Office of Naval Research (ONR) - ONR grant No: N 00014-09-1-0535. I would like to express my sincere thanks and gratitude to Dr. Asuri K. Vasudevan, Program Manager at ONR for the financial support of this research. I am deeply indebted to my mentor, teacher and advisor Prof. Susil K. Putatunda for his continuous financial and technical support in bringing this work to its current state.
    [Show full text]
  • HYDROGEN EMBRITTLEMENT TESTING of AUSTENITIC STAINLESS STEELS SUS 316 and 316L by DARREN MICHAEL BROMLEY B.A.Sc., the University
    HYDROGEN EMBRITTLEMENT TESTING OF AUSTENITIC STAINLESS STEELS SUS 316 AND 316L by DARREN MICHAEL BROMLEY B.A.Sc., The University of British Columbia, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Materials Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2008 © Darren Michael Bromley, 2008 Abstract The imminent emergence of the hydrogen fuel industry has resulted in an urgent mandate for very specific material testing. Although storage of pressurized hydrogen gas is both practical and attainable, demands for increasing storage pressures (currently around 70 MPa) continue to present unexpected material compatibility issues. It is imperative that materials commonly used in gaseous hydrogen service are properly tested for hydrogen embrittlement resistance. To assess material behavior in a pressurized hydrogen environment, procedures were designed to test materials for susceptibility to hydrogen embrittlement. Of particular interest to the field of high-pressure hydrogen in the automotive industry, austenitic stainless steels SUS 316 and 316L were used to validate the test programs. Tests were first performed in 25 MPa helium and hydrogen at room temperature and at -40oC. Tests in a 25 MPa hydrogen atmosphere caused embrittlement in SUS 316, but not in 316L. This indicated that alloys with higher stacking fault energies (316L) are more resistant to hydrogen embrittlement. Decreasing the test temperature caused slight embrittlement in 316L and significantly enhanced it in 316. Alternatively, a second set of specimens was immersed in 70 MPa hydrogen at 100oC until reaching a uniform concentration of absorbed hydrogen. Specimens were then loaded in tension to failure to determine if a bulk saturation of hydrogen provided a similar embrittling effect.
    [Show full text]
  • Sermalon® Coating for Turbomachinery
    SermaLon® Coating for Turbomachinery The patented three-part SermaLon® • Excellent bond strength coating system was developed • Continuous protection against primarily to provide anti-fouling relative humidity to 100 and corrosion protection to driven percent, and with continuous compressor components and salt/mist in air industrial gas turbine components • Excellent coating ductility exposed to wet chloride attack, as • No hydrogen embrittlement well as steam turbine components. problems • High resistance to corrosion The SermaLon coating system fatigue consists of: • Excellent resistance to hydrocarbon fouling • An aluminum-filled chromate/ phosphate bond coat Applications Centrifugal compressor rotor coated • An intermediate high- with SermaLon SermaLon coating is designed to be temperature polymeric used on ferrous substrates such as: inhibitive coating • Centrifugal compressors exposed • Steam turbine components • A PTFE-impregnated topcoat to sour gas, wet chlorides, or exposed to corrosive steam that provides a barrier excessive fouling, especially by • IGVs of industrial gas turbines against corrosion and excellent ethylene and other hydrocarbons resistance to fouling Physical Properties The coating system provides excellent protection to carbon and Thickness 0.004 to 0.006 inches (100 to 150 µm) stainless steel substrates when Maximum Continuous 500°F (260°C) exposed to hydrocarbons, corrosive Operating Temperature steam conditions, sour gas or low pH wet chloride environments. Peak Operating Temperature/Time 600°F (315°C)/1 hour
    [Show full text]
  • Hydrogen Embrittlement of Pipeline Steels: Fundamentals, Experiments, Modeling
    III.10 Hydrogen Embrittlement of Pipeline Steels: Fundamentals, Experiments, Modeling Technical Targets P. Sofronis (Primary Contact), I.M. Robertson, This project is conducting fundamental studies D.D. Johnson of hydrogen embrittlement of materials using both University of Illinois at Urbana-Champaign numerical simulations and experimental observations 1304 West Green Street Urbana, IL 61801 of the degradation mechanisms. Based on the Phone: (217) 333-2636 understanding of the degradation mechanisms the E-mail: [email protected] project’s goal is to assess the reliability of the existing natural gas pipeline infrastructure when used for DOE Technology Development Manager: hydrogen transport, suggest possible new hydrogen- Monterey Gardiner compatible material microstructures for hydrogen Phone: (202) 586-1758 delivery, and propose technologies (e.g. regenerative E-mail: [email protected] coatings) to remediate hydrogen-induced degradation. DOE Project Officer: Paul Bakke These studies meet the following DOE technical targets for Hydrogen Delivery as mentioned in Table 3.2.2 of the Phone: (303) 275-4916 E-mail: [email protected] FCT Multi-Year RD&D Plan: • Pipelines: Transmission—Total capital investment Contract Number: GO15045 will be optimized through pipeline engineering Start Date: May 1, 2005 design that avoids conservatism. This requires Projected End Date: December 31, 2011 the development of failure criteria to address the hydrogen effect on material degradation (2012 target). • Pipelines: Distribution—Same cost optimization as Objectives above (2012 target). • Pipelines: Transmission and Distribution—Reliability • Mechanistic understanding of hydrogen relative to H2 embrittlement concerns and integrity, embrittlement in pipeline steels in order to devise third party damage, or other issues causing cracks fracture criteria for safe and reliable pipeline or failures.
    [Show full text]
  • Hydrogen Embrittlement
    2 HYDROGEN EMBRITTLEMENT Electrodeposition and electroless deposition and their associated processing steps including acid pickling and electrocleaning can generate hydrogen which can enter substrates in the atomic form and cause hydrogen embrittlement. This chapter outlines the factors which cause hydrogen embrittlement, its subsequent effects and failure mechanisms, and then elaborates on methods for reducing or eliminating the problem. Since steels are particularly prone to hydrogen embrittlement, emphasis is placed on these alloys. A section on permeation of hydrogen through various protective coatings is included to show the effectiveness of various barrier layers on minimizing hydrogen egress to substrates. Some excellent materials science investigative work showing how electroless copper deposits are embrittled by hydrogen is also presented along with data on hydrogen pick-up as a result of chemical milling of various steel and titanium alloys. Hydrogen embrittlement is a generic term used to describe a wide variety of fracture phenomena having a common relationship to the presence of hydrogen in the alloy as a solute element or in the atmosphere as a gas (1). Louthan (2) lists the following problems as a result of hydrogen embrittlement and/or hydriding: failures of fuel cladding in nuclear reactors, breakage of aircraft components, leakage from gas filled pressure vessels used by NASA, delayed failure in numerous high strength steels, reductions in mechanical properties of nuclear materials, and blisters or fisheyes in copper, aluminum and steel parts. Steels, particularly those with high strengths of 1240 to 2140 MPa (180,OOO to 310,000 psi) are prone to hydrogen embrittlement regardless of temperature (3)(4), (Figure 1).
    [Show full text]
  • Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
    materials Article Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments Anton Trautmann 1 , Gregor Mori 1,*, Markus Oberndorfer 2, Stephan Bauer 2, Christoph Holzer 1 and Christoph Dittmann 3 1 Department General, Analytical and Physical Chemistry, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria; [email protected] (A.T.); [email protected] (C.H.) 2 Green Gas Technology, RAG Austria AG, Schwarzenbergplatz 16, 1015 Vienna, Austria; [email protected] (M.O.); [email protected] (S.B.) 3 Research & Development, voestalpine Tubulars GmbH & Co KG, Alpinestrasse 17, 8652 Kindberg, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-3842-402-1250 Received: 6 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: To avoid failures due to hydrogen embrittlement, it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached, the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1, P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H2) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H2S). H2 gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption, which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H2S was approximately one order of magnitude larger than under conditions with H2 gas.
    [Show full text]