Morse Code - Wikipedia, the Free Encyclopedia File:///H:/Optical/Morse Code.Htm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SOUNDS of MORSE CODE (Version 2) NUMERALS (10)
SOUNDS OF MORSE CODE (Version 2) NUMERALS (10) Using dots and dashes to represent the sounds of 1 di-DAH-DAH-DAH-DAH Morse code is HIGHLY discouraged. 2 di-di-DAH-DAH-DAH Morse code is a language of SOUND, and by 3 di-di-di-DAH-DAH converting SOUND into dots and dashes, THEN 4 di-di-di-di-DAH converting dots and dashes into the letter the 5 di-di-di-di-dit SOUND represents WILL shoot you in the foot when you try to pick up speed. You can count on it. 6 DAH-di-di-di-dit (Continued next page...) 7 DAH- DAH-di-di-dit 8 DAH- DAH- DAH-di-dit FCC 43 CHARACTERS: 9 DAH-DAH-DAH-DAH-dit LETTERS (26) 0 DAH-DAH-DAH-DAH-DAH A di-DAH PUNCTUATION & PROCEDURALS (7) B DAH-di-di-dit C DAH-di-DAH-dit BT DAH-di-di-di-DAH = (Note 1) D DAH-di-dit ? di-di-DAH-DAH-di-dit E dit / DAH-di-di-DAH-dit F di-di-DAH-dit , DAH-DAH-di-di-DAH-DAH G DAH-DAH-dit . di-DAH-di-DAH-di-DAH H di-di-di-dit AR di-DAH-di-DAH-dit + (N0te 2) I di-dit SK di-di-di-DAH-di-DAH (Note 3) J di-DAH-DAH-DAH K DAH-di-DAH PROSIGNS NEEDED FOR GOOD CW OPERATING, NOT IN THE FCC 43 L di-DAH-di-dit M DAH-DAH BK DAH-di-di-di-DAH-di-DAH (Note 4) N DAH-dit KN DAH-di-DAH-DAH-dit (Note 5) O DAH-DAH-DAH AS di-DAH-di-di-dit (Note 6) P di-DAH-DAH-dit @ di-DAH-DAH-di-DAH-dit (Note 7) Q DAH-DAH-di-DAH error di-di-di-di-di-di-di-dit (Note 8) R di-DAH-dit NOTES S di-di-dit T DAH 1. -
Morse Code (Edited from Wikipedia)
Morse Code (Edited from Wikipedia) SUMMARY Morse code is a method of transmitting text information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. It is named for Samuel F. B. Morse, an inventor of the telegraph. The International Morse Code encodes the ISO basic Latin alphabet, some extra Latin letters, the Arabic numerals and a small set of punctuation and procedural signals (prosigns) as standardized sequences of short and long signals called "dots" and "dashes", or "dits" and "dahs", as in amateur radio practice. Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Each Morse code symbol represents either a text character (letter or numeral) or a prosign and is represented by a unique sequence of dots and dashes. The duration of a dash is three times the duration of a dot. Each dot or dash is followed by a short silence, equal to the dot duration. The letters of a word are separated by a space equal to three dots (one dash), and the words are separated by a space equal to seven dots. The dot duration is the basic unit of time measurement in code transmission. To increase the speed of the communication, the code was designed so that the length of each character in Morse is shorter the more frequently it is used in the language. Thus the most common letter in English, the letter "E", has the shortest code, a single dot. -
JOTA Activity Booklet KE4TIO
1 2 3 Gulf Ridge Council Pack 415 KE4TIO Alan Wentzell (Operator) Amateur Call Signs Heard and Worked: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ States Contacted: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Countries Contacted: __________________________________ __________________________________ __________________________________ __________________________________ Scouts Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Akela’s Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 4 Q Codes The “Q” code was originally developed as a way of sending shorthand messages in Morse Code. However, it is still used by operators for voice communications. Some of those in common use are listed below: QRA What is your call sign? QRM I have interference (manmade). QRN I am receiving static (atmospheric noise). QRT I am closing -
Mnlilslffislßl SIGNAL BOOK UNITED STATES ARMY
Uifh '^r MnlilSlffiSlßl SIGNAL BOOK UNITED STATES ARMY v 1916 WASHINGTON GOVERNMENT PRINTING OFFICE 1916 NOV 0 8 1988 WAR DEPARTMENT Document No. 500 Office ofthe Chief Sijnal Officer ADDITIONALCOPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE•SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE "WASHINGTON,D. C. AT 20 CENTS PER COPY V War Department, Office of the Chief of Staff. > Washington, April15, 1916. The followingSignal Book, prepared by the Chief Signal Officer of the Army,is approved and herewith issued for the information and government of the Regular Army and the Organized Militia of the United States. It supersedes Signal Book, United States Army, 1914, and its provisions willbe strictly observed throughout the service. order of the Secretary of War: H.L. Scott, Major General, Chief ofStaff. 3 CONTENTS. Page. Part I. General Instructions for Army Signaling 7 11. The American Morse Code 9 111. The International Morse or General Service Code. \u25a0 12 IV. Visual Signaling ingeneral 15 V. Visual Signaling by Flag, Torch, Hand Lan tern, or Beam of Searchlight (without shut ter) 17 VI. Signaling with Heliograph, Flash Lantern, or Searchlight (with shutter) 18 VII.The Ardois System 19 VIII.Signaling by Two-ArmSemaphore . 21 Stationary Semaphore 21 Hand Flags withTwo-ArmSemaphore Code. 21 IX.Letter Codes: Infantry .' 23 Cavalry. 24 Field Artillery ..... 24 Coast Artillery , 26 X. Conventional and Preconcerted Signals with Rockets, Bombs, Small Arms, Guns, Coston Lights, Very Pistols, etc 2828 XI.Flag Signals by Permanent Hoist. 31 XII.Conventional Telephone Signals 33 XIII.Emergency Signals '.. 34 XIV.Additional and Improvised Codes. 38 XV. -
Morse Code [10Pt] History
Morse code History 2013-June-11 Code pre-Morse Polybius, Greek historian from 150 BC, sent messages with torches, with numbers standing for letters. 1 2 3 4 5 1 ABCDE 2 F G H I,J K 3 LMNOP 4 QRSTU 5 VWXYZ that tied together to make national networks. Invention of telegraph In the Napoleanic wars both the French and the British set up towers Invention of telegraph In the Napoleanic wars both the French and the British set up towers that tied together to make national networks. Heartbroken to know that for days he was unaware of his wife's failing health and her lonely death he first began to think about how to do rapid long distance communication. The code as part of the telegraph: Morse Samuel Morse was a well-known painter. S F B Morse 1791-1872 In 1825 he was asked to paint the Marquis de Lafayette in Washington DC. Mid-way through he got a note that his wife was ill. He hurried home to CT, but was too late. The code as part of the telegraph: Morse Samuel Morse was a well-known painter. S F B Morse 1791-1872 In 1825 he was asked to paint the Marquis de Lafayette in Washington DC. Mid-way through he got a note that his wife was ill. He hurried home to CT, but was too late. Heartbroken to know that for days he was unaware of his wife's failing health and her lonely death he first began to think about how to do rapid long distance communication. -
1 めざせ 1 級! 英語上級者への道 ~Listen and Speak Ⅱ~ 第 7 回
めざせ 1 級! 英語上級者への道 ~Listen and Speak Ⅱ~ 第 7 回 モールス信号 Script ■Dialogue for Introduction E: Hello, Tets. Thanks for posting so many photos of your wonderful journey to Europe on Facebook. I felt as if I were traveling with you on the continent. T: Yes, with social networks we now have almost instant communication. That’s a far cry from the days of snail mail. E: Indeed it is. But you know, Tets, there were some important interim communication technologies along the way. For example, do you know the origin of the acronym “SOS”? T: Ah! Dot dot dot /dash dash dash/ dot dot dot! That is one of the most famous acronyms represented by the telegraph code system developed by Samuel Morse in 1836. That system was also implemented later in radio broadcasting. “Save Oh Save” or perhaps “Save Our Souls”…there is some debate as to the original meaning! There was, however, Edward, an earlier version of this call for distress! Did you know that, my friend? E: Indeed I do! The original code was CQD! It may have meant “Come quickly: Distress!” But the dots and dashes used to indicate it were too long and… T: Stop! We will have to send a real distress call if we spill the beans about our lesson too soon! Let’s give our listeners a chance to experience this article for themselves. E: A fine idea! Let’s signal the start of this month’s study! T&E: Pip-pip-pip…pip-pip. ■Listen to the passage and answer the questions that follow. -
Safety and Alarming Applications Using ISA100 Wireless
Safety and alarming applications using ISA100 Wireless Yokogawa Electric Corporation Toshi Hasegawa 1 March 2016 Presenter Toshi Hasegawa is a Manager of standard department, Marketing Head quarters. Toshi has been working for Yokogawa Electric Corporation for 27 years, and he has worked for development of Distributed Control Systems (DCS). His current activity is mainly on standardization and marketing of industrial wireless network. 2 The History of Radio • Marconi had an early interest in science, and was especially interested in the work of Hertz • He quickly realized the potential of wireless transmission and filed a British patent – Awarded on 2nd July 1897, GB12039 • At 12:00pm on the 12th December 1901 Marconi sent and received the first Transatlantic radio transmission 3 The History of Radio • On Sunday evening 14th April 1912 the largest passenger ship in the world, Titanic struck an iceberg • The radio operators onboard were employed by Marconi International Marine • They sent a distress signal alerting the world and the Carpathia "CQD CQD SOS Titanic Position 41.44 N 50.24 W.·······” • Radio had proven it worth… Wireless safety application has been started over 100 years ago.. 4 Today’s topics 1) Motivation of wireless for plant safety 2) Benefits 3) Key requirements 4) ISA100 Wireless solutions 5) Applications 6) Summary 5 Motivation of adopting wireless for safety • Preventive measures – Process condition / status monitoring: Temperatures / Pressures / Flows / Levels / etc. – Asset condition monitoring: Vibration / Corrosion / Temperature / etc. • Accident avoidance / Limit the extent of damages – Alarm / Warning: Gas leak detection / Safety shower detection /Tsunami detection – Emergency shutdown: Remote valve control for safety mode • Human safety – People tracking on site / Communication to navigate for evacuation / etc. -
Titanic Lessons.Indd
Lee AWA Review Titanic - Lessons for Emergency Communica- tions 2012 Bartholomew Lee Author She went to a freezing North Atlantic grave a hundred years ago, April 15, 1912, hav- By Bartholomew ing slit her hull open on an iceberg she couldn’t Lee, K6VK, Fellow avoid. Her story resonates across time: loss of of the California life, criminal arrogance, heroic wireless opera- Historical Radio tors, and her band playing on a sinking deck, Society, copyright serenading the survivors, the dying and the dead 2012 (no claim to as they themselves faced their own cold wet images) but any demise. The S.S. Titanic is the ship of legend.1 reasonable use The dedication to duty of the Marconi wire- may be made of less operators, Jack Phillips and Harold Bride, this note, respect- is both documented and itself legendary.2 Phil- ing its authorship lips stuck to his key even after Captain Edward and integrity, in Smith relieved him and Bride of duty as the ship furtherance of bet- sank. Phillips’ SOS and CQD signals brought the ter emergency com- rescue ships, in particular the S.S. Carpathia. munications. Phillips died of exposure in a lifeboat; Bride Plese see the survived.3 author description This note will present some of the Marconi at the end of the wireless messages of April 14. Any kind of work article, Wireless -- under stress is challenging. In particular stress its Evolution from degrades communications, even when effective Mysterious Won- communications can mean life or death. Art der to Weapon of Botterel4 once summed it up: “Stress makes you War, 1902 to 1905, stupid.” The only protection is training. -
Morse Code and the Information Age Morse Code, Invented by Samuel F. B. Morse in the 1830S, Is a Method of Transmitting Textual
Morse Code and the Information Age Morse code, invented by Samuel F. B. Morse in the 1830s, is a method of transmitting textual information as a series of on-off tones, lights, or clicks that can be directly understood by a skilled listener or observer without special equipment. The International Morse Code encodes the Roman alphabet, the Arabic numerals and a small set of punctuation and procedural signals. The original telegraph system had an apparatus on the receiving end that spat out a string of paper with indentations on it. Short indentations were called “dots” or “dits,” and the longer ones “dashes” or “dahs.” Because many non-English natural languages use more than the 26 Roman letters, extensions to the Morse alphabet exist for those languages. Morse code has been in use for more than 160 years—longer than any other electrical coding system. What is called Morse code today is actually somewhat different from what was originally developed. The Modern International Morse code, or continental code, was created by Friedrich Clemens Gerke in 1848 and initially used for telegraphy between Hamburg and Cuxhaven in Germany. Gerke changed nearly half of the alphabet and all of the numerals resulting substantially in the modern form of the code. After some minor changes, International Morse Code was standardized at the International Telegraphy Congress in 1865 in Paris, and was later made the standard by the International Telecommunication Union (ITU). Samuel Morse's original code specification, largely limited to use in the United States and Canada, became known as American Morse code or railroad code. -
Letter Circular 45: Construction and Operation of a Simple
' «i -•aif -ISe • 1-b Publication of the Letter DEPARTMENT OF COM'lERCE Circular BUREAU OF STANDARDS LC 45 WASHINGTON, D. 0. CONSTRUCTION AND OPERATION OF A SIMPLE RAD IOTELEGP.APHI C CODE PRACTICE SET.* (Prepared at request of the States Relations Service, United States Department of Agriculture for use by Boys 1 and Girls 1 Radio Clubs.) Introduction This pamphlet describes apparatus which may be used for the pur- pose of learning the radio telegraph code. The apparatus is very easy to set up and operate. It is intended to be used at radio club meet- ing places or in places where a number of radio students are accustomed to assemble. Those who construct the simple radio receiving sets des- cribed in the first two pamphlets of this series will probably hear many signals which are in code. The Code Practice Set is therefore made a part of this series so shat the international Morse Code may be learned. The cost of the complete outfit will be about $5*70 or, if one constructs the telegraph key, she. cost will be reduced to about $3«b0 It is assumed that those who use this outfit have radio receiving sets and can bring their telephone receivers (“phones") to connect to the other apparatus. It is also assumed that it will not be necessary to purchase the table upon which the parts are mounted. It is desirable *This is the third of a series of pamphlets describing the construction of radio equipment. The two publications which nave been issued are Letter Receiving Circular 43 , "Construction and Opera-cion of a Very Simple Radio Equipment," and Letter Circular 44, "Construction and Operation of a Two- Circuit Radio Receiving Equipment with Crystal Detector." These describe the construction and operation of simple receiving sets. -
“R.M.S. Titanic” Hanson W
“R.M.S. Titanic” Hanson W. Baldwin I The White Star liner Titanic, largest ship the world had ever known, sailed from Southampton on her maiden voyage to New York on April 10, 1912. The paint on her strakes was fair and bright; she was fresh from Harland and Wolff’s Belfast yards, strong in the strength of her forty-six thousand tons of steel, bent, hammered, shaped, and riveted through the three years of her slow birth. There was little fuss and fanfare at her sailing; her sister ship, the Olympic—slightly smaller than the Titanic— had been in service for some months and to her had gone the thunder of the cheers. But the Titanic needed no whistling steamers or shouting crowds to call attention to her superlative qualities. Her bulk dwarfed the ships near her as longshoremen singled up her mooring lines and cast off the turns of heavy rope from the dock bollards. She was not only the largest ship afloat, but was believed to be the safest. Carlisle, her builder, had given her double bottoms and had divided her hull into sixteen watertight compartments, which made her, men thought, unsinkable. She had been built to be and had been described as a gigantic lifeboat. Her designers’ dreams of a triple-screw giant, a luxurious, floating hotel, which could speed to New York at twenty-three knots, had been carefully translated from blueprints and mold loft lines at the Belfast yards into a living reality. The Titanic’s sailing from Southampton, though quiet, was not wholly uneventful. -
The FOC Guide to Morse Code Proficiency by Gary Hinson, Zl2ifb Version 1.4 January 2019
The FOC Guide to Morse Code Proficiency by Gary Hinson, ZL2iFB Version 1.4 January 2019 Contents Introduction Speed Ti ming is ever y thing Pitch Q-codes, abbrev’s, punctuation & prosigns Swings and fists Morse quality metric Hinson tips Sending better CW Copying CW better Conclusion Reader feedback References Bibliography (other useful resources) Introduction Properly-formed Morse code is a delight to hear when strong, and copiable by ear even when signals are quite weak. Despite being monotonic and irregular, good Morse has a curiously musical quality, far from monotonous. However, on the air we typically face QRM, QRN, QSB, weak/marginal signals leading to errors and gaps in the copy, confusion, fatigue and frustration. Throw in badly-sent CW such as mis-sent characters, uncorrected errors, spelling mistakes, stray dits and missing dahs, variable timing with seemingly random spacing, plus off-frequency transmitters, drift, chirp, ringing filters and so on, and making contact may become, let’s say, challenging. Prompted by a lively discussion around W1RM Pete’s sage “One of the goals of every skilled comment ⇒ this guide offers advice on improving proficiency in CW operator is to send well. That Morse code for those already using CW (= Continuous Wave, not means good character formation Can’t Work!) on the amateur bands. After explaining the key and character spacing. It makes issues, you will find tips for both sending and receiving. Both little difference what you use to do aspects are important and can be improved - no matter how good, the sending, be it straight key, bug, we can always do better.