Final Vermont CREP PEA 6-6-05

Total Page:16

File Type:pdf, Size:1020Kb

Final Vermont CREP PEA 6-6-05 FINAL PROGRAMMATIC ENVIRONMENTAL ASSESSMENT FOR THE IMPLEMENTATION OF THE CONSERVATION RESERVE ENHANCEMENT PROGRAM FOR VERMONT US Department of Agriculture Farm Service Agency June 2005 Programmatic Environmental Assessment for Implementation of the Vermont Final Conservation Reserve Enhancement Program Agreement EXECUTIVE SUMMARY This Programmatic Environmental Assessment (PEA) describes the potential environmental consequences resulting from the proposed implementation of Vermont’s Conservation Reserve Enhancement Program (CREP) Agreement (Vt CREP , 2005). The environmental analysis process is designed: to ensure the public is involved in the process and informed about the potential environmental effects of the proposed action; and to help decision makers take environmental factors into consideratio n when making decisions related to the proposed action. This PEA has been prepared by the United States Department of Agriculture (USDA), Farm Service Agency (FSA) in accordance with the requirements of the National Environmental Policy Act (NEPA) of 1969, the Council on Environmental Quality regulations implementing NEPA, and 7 CFR 799 Environmental Quality and Related Environmental Concerns – Compliance with the National Environmental Policy Act. Purpose and Need for the Proposed Action The purpose of the proposed action is to implement Vermont’s CREP agreement. Under the agreement, eligible farmland in the State that drains into Lake Champlain and the Connecticut River would be voluntarily removed from production and approved conservation practices, such as installation of filter strips, riparian buffers, grassed waterways, and wetland restoration, would be implemented. Landowners would receive annual rental payments and would be eligible for one-time payments to support the implementation of approved conservation practices. The Vermont CREP agreement is needed to assist the State in meeting the following conservation goals: · Improve water quality, · Protect drinking water, · Protect threatened and endangered species · Improve wildlife habitat, and · Assist the State in complying with environmental regulations that are related to agriculture. Proposed Action and Alternatives The proposed action would implement Vermont’s CREP agreement. Under this agreement, 7,500 acres of eligible farmland within the all of the counties in Vermont would be enrolled in CREP: Addison, Bennington, Caledonia, Chittenden, Essex, Franklin, Grand Isle, Lamoille, Orange, Orleans, Rutland, Washington, Windham, and Windsor. The State has identified the watersheds in the Lake Champlain Basin , the Connecticut River Basin , Lake Memphremagog Basin, and the Hudson River Basin for treatment under this CREP agreement. The tributaries of Lake Champlain are the Lamoille, LaPlatte, Mettawee, Missisquoi, Poultney and Winooski Rivers, and Otter Creek. The main tributaries of the Connecticut River Basin are the Black, Connecticut, Deerfield, Ompompanoosuc, Ottaquechee, Passumpsic, Saxtons, Stevens, Waits, Wells, West, White and Williams Rivers. Landowners would enroll eligible farmland by entering into 10-year minimum contracts with FSA, not to exceed 15 years. Approved conservation practices would be established and maintained on enrolled lands for the contract duration. Landowners would receive annual rental payments for the duration of the contracts as well as financial and technical support for implementing and maintaining the practices. For lands enrolled in CREP, annual rental payments would be the sum of the base soil rental rate, an incentive payment, and an annual maintenance rate. This PEA documents the analysis of the Proposed Action and the No Action Alternative. Under the No Action Alternative, no lands would be enrolled in CREP. None of the conservation practices or rental payments described above would be implemented. ES-1 Programmatic Environmental Assessment for Implementation of the Vermont Final Conservation Reserve Enhancement Program Agreement Summary of Environmental Consequences Below in Table ES-1 is a summary of the potential impacts identified in this PEA. Table ES-1: Executive Summary Impacts Table Resource Proposed Action No Action Alternative The proposed action is expected to contribute to vegetation and wildlife Continued degradation of terrestrial Biological Resources diversity. Positive impacts to threatened and and aquatic habitats; potential for endangered species, species of concern, and invasion by exotic species. their habitats are expected. There is high potential for encountering archaeological resources. Site specific archaeological and historic architectural No major impacts are expected, though surveys and coordination with SHPO are negative impacts to cultural resources recommended prior to the installation of Cultural Resources could result from changes in existing approved conservation practices. farming practices or the disturbance of Consultation with several tribes that have previously undisturbed land. traditional ties to the Vermont areas affected may be required once sites are selected and could delay program enrollment. Significant long-term positive impacts to surface and groundwater quality are Continued degradation of surface and expected. Wetlands acreages are expected to groundwater and wetlands is expected increase as a result of the proposed to result if the proposed action is not implemented. The surface drainage Water Resources conservation practices. Temporary minor adverse impacts to systems would continue to receive existing wetlands and localized surface sediment from eroded soils and water quality may result from runoff during potential contaminants from activities associated with the installation of agricultural wastes. the proposed conservation practices. Continued erosion is expected to result in susceptible areas that are not Positive impacts to localized topography and vegetated, have unrestricted surface Earth Resources soils are expected to result from flow, or have unimproved channels if implementation of the proposed action. the proposed action is not implemented. No impacts to attainment status or violations of State Implementation Plan standards would result from the proposed action. However, localized temporary adverse No change from current conditions is Air Quality minor impacts to air quality may result from expected. ground disturbing activities and the use of heavy equipment during the installation of approved conservation practices. ES-2 Programmatic Environmental Assessment for Implementation of the Vermont Final Conservation Reserve Enhancement Program Agreement Table ES-1: Executive Summary Impacts Table(continued) Resource Proposed Action No Action Alternative Positive long term effects on recreational resources where proposed approved No change from current land-based conservation practices are expected to recreational opportunities is expected; Recreational Resources increase habitat for game and non-game however, continued water quality species. Water quality improvements degradation may affect game fish or would result in better recreation fishing other water related recreation. and other water-related recreation. Increased land values and a loss of farm labor jobs and expenditures are expected to result from the implementation of the No changes in current trends in proposed action. The project area is not Socioeconomics and socioeconomic conditions are considered an area of concentrated Environmental Justice expected. minority population, no significant impacts to Environmental Justice is expected. ES-3 Programmatic Environmental Assessment for Implementation of the Vermont Final Conservation Reserve Enhancement Program Agreement Table of Contents 1.0 PURPOSE AND NEED FOR THE PROPOSED ACTION............................................ 1 1.1 INTRODUCTION.........................................................................................................1 1.2 BACKGROUND...........................................................................................................1 1.3 PURPOSE AND NEED FOR THE ACTION ..................................................................2 1.4 REGULATORY COMPLIANCE...................................................................................3 1.5 ORGANIZATION OF THE PEA...................................................................................3 2.0 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES ............................ 5 2.1 PROPOSED ACTION ...................................................................................................5 2.1.1 Eligible Lands ........................................................................................................5 2.1.2 Established Conservation Practices ..........................................................................5 2.1.3 Provide Financial Support to Producers....................................................................6 2.2 Additional environmental evaluation requirements..........................................................7 2.3 Alternatives...................................................................................................................7 3.0 AFFECTED ENVIRONMENT...................................................................................... 8 3.1 BIOLOGICAL RESOURCES........................................................................................8 3.1.1 Definition of Resource ............................................................................................8 3.1.2 Region of Influence.................................................................................................8
Recommended publications
  • Anisodactylus Binotatus Fabr., a Carabid Beetle New to New Zealand, and a Review of the Exotic Carabid Fauna
    Pacific Insects 5 (4) : 837-847 December 30, 1963 ANISODACTYLUS BINOTATUS FABR., A CARABID BEETLE NEW TO NEW ZEALAND, AND A REVIEW OF THE EXOTIC CARABID FAUNA By R. L. C. Pilgrim DEPT, OF ZOOLOGY, UNIVERSITY OF CANTERBURY, NEW ZEALAND Abstract: Anisodactylus binotatus Fabr. 1787 (Col.: Carabidae), an introduced species now established in Canterbury (South Island), New Zealand, is reported for the first time. The literature respecting other carabids sometimes recorded as introduced is reviewed; Ago- nochila binotata (White, 1846), Agonum submetallicum (White, 1846), Hypharpax australasiae (Dejean, 1829) and Pentagonica vittipennis Chaudoir, 1877 are shown to be better considered as endemic to the Australia - New Zealand area. Other species are classed as either native to New Zealand, clearly introduced though not all established, or of doubtful occurrence in New Zealand. Introduction: The Carabidae of New Zealand are predominantly endemic species, but a small number of exotic species has been recorded. This paper reports a further introduc­ tion to the carabid fauna of this country and concludes with a survey of recorded exotic Carabidae in New Zealand. Specimens of the newly-recorded species were collected in domestic gardens in Christ­ church, and were included in a collection sent for identification to Dr. E. B. Britton, British Museum (Nat. Hist.), who kindly drew the writer's attention to the fact that they were so far unreported from New Zealand. Description of adult (from New Zealand specimens) Fig. 1. Anisodactylus binotatus Fabricius, 1787 Color: Head, pronotum, elytra and femora black; tibiae and tarsi light brown to red- black ; palps and antennal segments 1-2 brown, remainder of antennae black; leg spines red-brown; head with small red spot on frons between eyes.
    [Show full text]
  • Viability of Ground Beetle Populations in Fragmented Heathlands
    Viability of ground beetle populations in fragmented heathlands Henk de Vries Promotoren: Dr. L. Brussaard Hoogleraar in de Bodembiologie Dr. W. van Delden Hoogleraar in de Populatiegenetica Rijksuniversiteit Groningen Co-promotor: Dr. Th. S. van Dijk Universitair docent Biologisch Station Wijster Viability of ground beetle populations in fragmented heathlands H. H. de Vries Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van de Landbouwuniversiteit Wageningen, Dr. C. M. Karssen, in het openbaar te verdedigen op woensdag 30 oktober 1996 des namiddags te vier uur in de Aula. t/)H cs"ic>zy>b LANDïîOUVV UXI VERSIT3T T ISBN 90-5485-586-X Printed on Challenger, 100% recycled paper This thesis has been accomplished at: Biological Station Wijster Wageningen Agricultural University Kampsweg 27 9418 PD Wijster The Netherlands Abstract Numbers of ground beetle species that are characteristic for heathlands were negatively associated with area, whereas this relationship was not found for the total number of ground beetle species or for unspecialised ground beetle species. In particular the number of heathland species with low dispersal ability was strongly related to area. Transplant experiments showed that some heathland species with low dispersal ability experienced reduced habitat quality in small habitats, whereas for others at least part of the unoccupied areas were of sufficient quality for successful reproduction. From the presence of occupied as well as unoccupied habitats and from knowledge on its possibilities for dispersal, it is inferred that Pterostichus lepidus lives in metapopulations with continuously and discontinuously occupied patches. Using allozymes, high levels of genetic variation were found in P.
    [Show full text]
  • Checklist of the Coleoptera of New Brunswick, Canada
    A peer-reviewed open-access journal ZooKeys 573: 387–512 (2016)Checklist of the Coleoptera of New Brunswick, Canada 387 doi: 10.3897/zookeys.573.8022 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of the Coleoptera of New Brunswick, Canada Reginald P. Webster1 1 24 Mill Stream Drive, Charters Settlement, NB, Canada E3C 1X1 Corresponding author: Reginald P. Webster ([email protected]) Academic editor: P. Bouchard | Received 3 February 2016 | Accepted 29 February 2016 | Published 24 March 2016 http://zoobank.org/34473062-17C2-4122-8109-3F4D47BB5699 Citation: Webster RP (2016) Checklist of the Coleoptera of New Brunswick, Canada. In: Webster RP, Bouchard P, Klimaszewski J (Eds) The Coleoptera of New Brunswick and Canada: providing baseline biodiversity and natural history data. ZooKeys 573: 387–512. doi: 10.3897/zookeys.573.8022 Abstract All 3,062 species of Coleoptera from 92 families known to occur in New Brunswick, Canada, are re- corded, along with their author(s) and year of publication using the most recent classification framework. Adventive and Holarctic species are indicated. There are 366 adventive species in the province, 12.0% of the total fauna. Keywords Checklist, Coleoptera, New Brunswick, Canada Introduction The first checklist of the beetles of Canada by Bousquet (1991) listed 1,365 species from the province of New Brunswick, Canada. Since that publication, many species have been added to the faunal list of the province, primarily from increased collection efforts and
    [Show full text]
  • Draft Final Remedial Investigation / Feasibility Study (Ri/Fs)
    Snperfondi RMQ SITE: DRAFT FINAL PKEAK; REMEDIAL VOLUME 1 OF 4 - TEXT REMEDIAL INVESTIGATION/FEASIBILITY STUDY NEW HAMPSHIRE PLATING COMPANY MERRIMACK, NEW HAMPSHIRE For U.S. Environmental Protection Agency By Halliburton NUS Corporation and Raytheon Engineers & Constructors, Inc. EPA Work Assignment No. 33-1LG1 EPA Contract No. 68-W8-0117 HNUS Project No. 0772 May 1996 Halliburton NTJS CORPORATION W94619DF DRAFT FINAL REMEDIAL INVESTIGATION REPORT VOLUME 1 OF 4 - TEXT REMEDIAL INVESTIGATION/FEASIBILITY STUDY NEW HAMPSHIRE PLATING COMPANY MERRIMACK, NEW HAMPSHIRE For U.S. Environmental Protection Agency By Halliburton NUS Corporation and Raytheon Engineers & Constructors, Inc. EPA Work Assignment No. 33-1LG1 EPA Contract No. 68-W8-0117 HNUS Project No. 0772 May 1996 Marilyn M. Wade, P.E. George D(7Gardner, P.E. Project Manager Program Manager DRAFT FINAL TABLE OF CONTENTS VOLUME 1 - TEXT DRAFT FINAL REMEDIAL INVESTIGATION REPORT NEW HAMPSHIRE PLATING COMPANY SITE MERRIMACK, NEW HAMPSHIRE SECTION PAGE E.O EXECUTIVE SUMMARY ES-1 1.0 INTRODUCTION 1-1 1.1 Site and Study Area Background 1-2 1.2 NHPC Site History 1-3 1.3 Report Organization 1-4 2.0 STUDY AREA INVESTIGATION 2-1 2.1 Previous Investigations 2-1 2.1.1 Peck Environmental Laboratory ,Inc 2-1 2.1.2 Wehran Engineerin g 2-2 2.1.3 New Hampshire Department of Environmental Services (NHDES) 2-3 2.1.4 Removal Actio n- U.S. EPA Emergency Response Team (ERT) 2-4 2.1.5 Wetlan dInvestigation 2-5 2.1.6 Technical Assistance Groundwater Samplin g 2-6 2.1.7 Non-Time-Critical Removal Action 2-7 2.1.8 Previous Investigation son Properties Abutting the NHPC Site 2-9 2.1.8.1 Magnum Leasing and Mortgage Company .
    [Show full text]
  • Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
    Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits.
    [Show full text]
  • Dams and Reservoirs in the Lake Champlain Richelieu River Basin
    JUST THE FACTS SERIES June 2019 DAMS AND RESERVOIRS IN THE LAKE CHAMPLAIN RICHELIEU RIVER BASIN MYTH Water released from tributary dams in the United States causes flooding in Lake Champlain and the Richelieu River. FACT Water levels in Lake Champlain and the Richelieu River Generally, mass releases of water from flood control are primarily affected by precipitation from rain or dams are avoided. In addition to compromising the snowmelt. structural integrity of the dams, mass releases would also endanger the very communities that these dams are built Because of its size, Lake Champlain can store a lot of to protect. water; the flood control dams and reservoirs in the basin, which are very small in comparison to the lake, do not When conditions force the release of more water than significantly change water levels of the lake and river as hydropower plants can handle, the increase in water they release water. levels immediately below the dam will be much greater than the increase on Lake Champlain. This is true even during high water and flooding events. Consider, for instance, when Lake Champlain and the Richelieu River experienced extreme flooding between April and June 2011, the additional releases flowing from Waterbury Reservoir—the largest flood control reservoir in the Vermont portion of the basin, contributed less than 2 centimetres (¾ inch) to the elevation of Lake Champlain and the upper Richelieu River. International Lake Champlain-Richelieu River Study Board FACT FACT Dams in the US portion of the basin are built for one of Waterbury Reservoir in Vermont is the largest reservoir two purposes: flood control or hydroelectric power.
    [Show full text]
  • The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018
    The Vermont Management Plan for Brook, Brown and Rainbow Trout Vermont Fish and Wildlife Department January 2018 Prepared by: Rich Kirn, Fisheries Program Manager Reviewed by: Brian Chipman, Will Eldridge, Jud Kratzer, Bret Ladago, Chet MacKenzie, Adam Miller, Pete McHugh, Lee Simard, Monty Walker, Lael Will ACKNOWLEDGMENT: This project was made possible by fishing license sales and matching Dingell- Johnson/Wallop-Breaux funds available through the Federal Sportfish Restoration Act. Table of Contents I. Introduction ......................................................................................... 1 II. Life History and Ecology ................................................................... 2 III. Management History ......................................................................... 7 IV. Status of Existing Fisheries ............................................................. 13 V. Management of Trout Habitat .......................................................... 17 VI. Management of Wild Trout............................................................. 34 VII. Management of Cultured Trout ..................................................... 37 VIII. Management of Angler Harvest ................................................... 66 IX. Trout Management Plan Goals, Objectives and Strategies .............. 82 X. Summary of Laws and Regulations .................................................. 87 XI. Literature Cited ............................................................................... 92 I. Introduction
    [Show full text]
  • Y E I O N Inside!
    yeion inside! FALL IN. LOVE 2.7 SECONDS. I IF YOU DON'T BELIEVE IN LOVE AT FIRST SIGHT IT'S BECAUSE YOU'VE NEVER LAID EYES ON THE JAVATM BEFORE. THIS HIGHLY RESPONSIVE CREEK BOAT MEASURES IN AT 7'9:' WEIGHS ONLY 36 LBS AND ANSWERS YOUR EVERY DESIRE WHEN PADDLING AGGRESSIVE LINES. AND WHEN IT COMES TO DROPPING OVER FALLS. ITS STABILITY AND VOLUME PROVIDE EFFORTLESS BOOFS AND PILLOW- SOFT LANDINGS.WHETHER YOU'RE 7 A BEGINNING CREEKER OR AN OLD HAND, ONCE YOU CLIMB INTO A JAVA YOU'LL KNOW WHY THEY CALL IT FALLING IN LOVE. Forum ......................................4 Features Corner Charc .................................... 8 Letters .................................... 10 When Rashfloods Hit Conservation .................................. 16 IFERC Takes Balanced Approach on Housatonic Access .................................. 18 IAccess Flash Reports Whitewater Releases on the North IFlow Study on the Cascades of the Nantahala Fork Feather IGiving the Adirondacks Back to Kayaks IUpper Ocoee Update Events .................................. 24 Canada Sechon IIf You Compete, You need to Know This IMagic is Alive and Music is Afoot Dams Kill Rivers in Canada Too! INew Method for Paddlers JimiCup 2001 IRace Results ISteep Creeks of New England, A Review Saving the Gatineau! River Voices ................................... 64 IGauley Secrets Revealed IBlazing Speedfulness s Dave's Big Adventure IWest Virginia Designed by Walt Disney INotes on a Foerfather ILivin' the Dream in South America Whitewater Love Trouble .................... 76 Cover: Jeff Prycl running a good one in Canada. Issue Date: JanuaryIFebrua~2002 Statement oi Frequencv: Published bimonthly Authorized Organization's Name and Address: American Whitewater P.O. Box 636 Prmted OII Fit3 ,pled Paper Margreb~lle,NY 12455 American Whitewater Januaty February 2002 ing enough for most normal purposes, but he does have a girlfriend and she has a gun and knows how to use it.
    [Show full text]
  • Winooski Watershed Landowner Assistance Guide
    Winooski Watershed Landowner assistance Guide Help Protect The Winooski River And Its Tributaries index of resources (a-Z) Accepted Agricultural Practice (AAP) Assistance Landowner Information Series Agricultural Management Assistance (AMA) Natural Resource Conservation Service Backyard Conservation Northern Woodlands Best Management Practices Nutrient Management Plan Incentive Grants Program (NMPIG) Better Backroads Partners for Fish and Wildlife Conservation Commissions Rain Garden Project Conservation Reserve Enhancement Program (CREP) River Management Program Conservation Reserve Program (CRP) Shoreline Stabilization Handbook Conservation Security Program (CSP) Small Scale/Small Field Conservation Conservation Technical Assistance (CTA) Trout Unlimited Environmental Quality Incentive Program (EQIP) Use Value Appraisal (“Current Use”) Farm Agronomic Practices Program (FAP) UVM-Extension Farm and Ranch Land Protection Program (FRPP) Vermont Agricultural Buffer Program (VABP) Farm*A*Syst Vermont Coverts: Woodlands for Wildlife Farm Service Agency Vermont Low Impact Development Guide Forest Bird Initiative Vermont River Conservancy Forest Stewardship Program VT DEC Winooski River Watershed Coordinator Friends of the Mad River Wetland Reserve Program (WRP) Friends of the Winooski River Wildlife Habitat Incentive Program (WHIP) Grassland Reserve Program (GRP) Wildlife Habitat Management for Vermont Woodlands Lake Champlain Sea Grant Winooski Crop Management Services Land Treatment Planning (LTP) Winooski Natural Resources Conservation District
    [Show full text]
  • Glover Flood Resilience Element
    FLOOD RESILIENCE PLAN for the Town of Glover, Vermont Prepared by Meghann Carter NorthWoods Stewardship Center East Charleston, VT in cooperation with the Glover Planning Commission and Glover Selectboard February, 2015 Paid for in part by the Barton Hydro Project Municipal Planning Grant Introduction With an all-hazards mitigation plan now written and pending approval, the Town of Glover is obligated to begin to address identified pertinent hazards, one of which is flooding and fluvial erosion. The purpose of this plan is to identify key hazard areas which are most likely to be affected by flood and fluvial erosion and to propose potential actions to minimize these hazards and their impacts. Potential major points of impact include dams, culverts, bridges, and infrastructure such as roads and buildings within the floodplains. Goals (1) Identify areas of greatest risk to flooding and fluvial erosion within the Town of Glover. (2) Develop recommendations for future actions to create a flood-and fluvial erosion-safe Glover, minimizing threats to public safety, property, and water quality. Flooding and Fluvial Erosion in Vermont Flooding and fluvial erosion are Vermont’s most common and costly types of natural disaster and over time, many compounding factors have increased Vermont’s susceptibility to flood damage. As climate change affects global temperature fluctuations, storms of greater power and higher frequency are anticipated, and indeed this trend has been observed in recent decades. This trend had led to global, state, and regional efforts to better prepare for these events by identifying sensitive resources, key areas of vulnerability, and implementing mitigations. In the interest of promoting local flood resilience, as of July 1, 2014, according to new legislation (Act 16), any newly adopted or readopted municipal or regional plan must have a Flood Resilience Plan Element.
    [Show full text]
  • The Geology of the Lyndonville Area, Vermont
    THE GEOLOGY OF THE LYNDONVILLE AREA, VERMONT By JOHN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT COMMISSION MONTPELIER, VERMONT BULLETIN NO. 8 1956 Lake Willoughby, seen from its north shore. TABLE OF CONTENTS ABSTRACT ......................... 7 INTRODUCTION 8 Location 8 Geologic Setting ..................... 8 Previous Work ...................... 8 Purpose of Study ..................... 9 Method of Study 10 Acknowledgments . 11 Physiography ...................... 11 STRATIGRAPHY ....................... 16 Lithologic Descriptions .................. 16 Waits River Formation ................. 16 General Statement .................. 16 Distribution ..................... 16 Age 17 Lithological Detail .................. 17 Gile Mountain Formation ................ 19 General Statement .................. 19 Distribution ..................... 20 Lithologic Detail ................... 20 The Waits River /Gile Mountain Contact ........ 22 Age........................... 23 Preliminary Remarks .................. 23 Early Work ...................... 23 Richardson's Work in Eastern Vermont .......... 25 Recent Detailed Mapping in the Waits River Formation. 26 Detailed Work in Canada ................ 28 Relationships in the Connecticut River Valley, Vermont and New Hampshire ................... 30 Summary of Presently Held Opinions ........... 32 Discussion ....................... 32 Conclusions ...................... 33 STRUCTURE 34 Introduction and Structural Setting 34 Terminology ......................
    [Show full text]
  • Nutrient Loading and Impacts in Lake Champlain – Missisquoi Bay and Lake Memphremagog
    Nutrient Loading and Impacts in Lake Champlain – Missisquoi Bay and Lake Memphremagog Missisquoi Bay. IJC Collection Lake Memphremagog. IJC Collection Missisquoi Bay Cyanobacteria. Pierre Leduc Prepared by the International Joint Commission April 21, 2020 Table of Contents I. Synthesis Document ........................................................................................................................ 3 A. Context ........................................................................................................................................ 3 Cyanobacteria .................................................................................................................................. 3 Actions and Consequences of Non-action ........................................................................................ 3 The Governments’ Reference ........................................................................................................... 4 IJC’s Approach to the Reference ...................................................................................................... 5 Workshops to Review Science and Policy on Nutrient Loading ........................................................ 6 Public Meeting and Online Consultation .......................................................................................... 6 B. IJC Analysis of SAG Reports ....................................................................................................... 7 C. Common Basin Recommendations and IJC Recommendations
    [Show full text]