Mean, the Variance, and Simple Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Mean, the Variance, and Simple Statistics ©2009-2018 Michael J. Rosenfeld, draft version 1.7 (under construction). draft October 3, 2018 Notes on the Mean, the Standard Deviation, and the Standard Error. Practical Applied Statistics for Sociologists. An introductory word on philosophy of the class: My goal in this class is to give you an intuitive understanding of some basic statistical ideas, and to give you practical experience with using basic statistics. Toward these pedagogical ends, I dispense with as much statistical formality as I possibly can. We will talk a little bit about linear algebra and about calculus (two bedrocks of statistical theory) in this class, but only as asides. Consider a variable X. E(X) is the expected value of X or the mean of X. The formal definition of E(X) is E()Xxpx ii () i if X is a discrete function, meaning you sum up the different outcomes weighted by how likely each different outcome is. If X is a continuous function, the expectation is defined this way: EX() xfxdx () where f(x) is the probability density function. Expectation is an important idea, but it is somewhat abstract. If X is Normally distributed (an assumption that is actually quite reasonable in the kinds of data and questions we will be looking at), and we have a bunch of x’s to observe, the sample mean of our x’s is actually equal to the expectation of X. Since the sample mean is very concrete and tangible and already familiar to you, I am going to talk a lot about the sample mean and not so much about E(X). These are notes on the Sample mean, the Variance, the Standard Deviation, and so on. In this discussion you will have to know a few basic things about summary notation: n XXXin(12 ... X ) i1 nn aXii a X ii11 nnn ()aXii bY a X i b Y i iii111 In words, summary notation is just a sum of things. No big deal. When you multiply each value by a constant, it is the same as multiplying the sum by the same constant. If the sight of summary notation scares you, don’t worry. Summary notation is just shorthand for a simple idea. 1) The Sample mean, or the average. If we have n observations, X1, X2,....Xn, the average of these is simply 1 n Avg() Xii X n i1 In other words, you take sum of your observations, and divide by the number of observations. We will generally write this more simply as 1 Avg() X X iin This is a formula you are all familiar with. The simple formula has some interesting implications. 2) How the Average changes when we add or multiply the Xi’s by constant values. In all the below equations, a and b are constants. 1 a Avg() aX aX X a ( Avg ()) X iiiinn When we take a variable and double it, the average also doubles. That should be no surprise. To be slightly more general: Avg()(()) a bXii a b Avg X (this is easy enough to show. See Homework 2) 3) Also, the Average of a sum of two variables is the sum of the Averages. More formally: 111 AvgXY() () XY ()()()() X Y AvgXAvgY iinnn ii i i i i If X is January income, and Y is February income, then the Average of January plus February income is the same as the Average for January plus the Average for February. No surprise there. 4) The sample variance, defined: 1 Var() X ( X Avg ()) X 2 iiin The Variance is basically the average squared distance between Xi and Avg(Xi). Variance can’t be negative, because every element has to be positive or zero. If all of the observations Xi are the same, then each Xi= Avg(Xi) and Variance=0. Variance has some down sides. For one thing, the units of Variance are squared units. If X is measured in dollars, then Var(X) is measured in dollars squared. That can be awkward. That’s one reason we more usually use the standard deviation rather than the variance is that the standard deviation (just the square root of the variance) puts the units back to the units of X. Sometimes the sample variance is calculated with 1/(n-1) rather than 1/n. With large enough samples, the difference is small. For simplicity’s sake, we will stick with the 1/n. 5) How does variance respond to changes in scale? 2 Var() a bXii b Var () X If you move the bell curve over (displacement by a), the variance does not change. If you 2 increase the Xi by a factor of b, the variance increases by b . 6) How about the Variance of the combination of two variables? Var()()()2(,) Xii Y Var X i Var Y i Cov X ii Y Var()()()2(,) Xii Y Var X i Var Y i Cov X ii Y If X and Y are independent, then covariance(X,Y)=0, and life becomes simple and sweet. Variance of (X+Y) is simply Var(X)+ Var(Y). Also note that Var(X-Y)= Var(X)+Var(Y), because you could think of -Y as (-1)Y. If you take the distribution and move it to the negative numbers, the variance is still the same. Of course we could just calculate the covariance (it’s not that hard). But most of the time it is simpler and cleaner to make the assumption of independence (and sometimes, it is even true!) 7) Standard Deviation StDev() Xii Var () X Standard Deviation is simply the square root of the variance. Standard deviation of X has the same units as X, whereas variance has squared units. When you want to know the standard deviation of the combination of two variables, the easiest thing to do is first calculate the variances, and then take the square root last. 8) Standard Error of the Mean Usually in social statistics we are interested not only distribution of a population (let’s say, the income of Nurses), but also in the mean and in the comparison of means (do nurses earn more than sociologists? How sure are we?) So let’s look at the variance and standard error of the mean. How sure are we about the mean earnings of nurses? 11n Var(())( Avg X Var X ) Var ( X ) ii2 i nni1 2 Because Var(bXi)=b Var(Xi). Now we take advantage of the fact that the X’s are independent, and identically distributed, so that the covariance between them is zero: 11n 11 Var( X ) Var ( X X ... X ) ( ) nVar ( X ) ( ) Var ( X ) 22 inii12 2 nni1 nn On the importance of sample size. Standard Deviation of the mean is usually called the Standard Error: Var() X Standard Error=Stdev ( Avg ( X )) i i n What is new here is the factor of square root of n in the denominator. What this means is the larger the sample size, the smaller the standard error of the mean. High standard error means we are less sure of what we are trying to measure (in this case the average of X). Small standard error implies that we are more sure. Sample size is crucial in social statistics, but if you want a standard error half as large, you need a sample size 4 times as big (because of the square root). If you increase the sample size, the population variance of nurse’s income stays the same, but the standard error of the mean of nurse’s income decreases. It is important to keep in mind the difference between standard deviation of the population and the standard error of the mean. 9a) Now let’s say we want to compare two means, Xi and Yi, say they are the incomes of lawyers and nurses. The difference between the means is easy to calculate- it’s just average income of the lawyers minus average income of the nurses. But what about the standard error of the difference? You take the standard errors of the individual means of X and Y, and you square them, to get the variance of the mean. Then you add them together to get the variance of the difference (because Var(X-Y)= Var(X)+ Var(Y) under independence), then you take the square root to get the standard error of the difference. 22 StdError(()())((()))((())) Avg Xij Avg Y StdError Avg X i StdError Avg Y j Avg() X Avg () Y the difference ijT Statistic StdError( Avg ( Xij ) Avg ( Y )) standard error of that difference which we will compare to the Normal distribution or sometimes to the T distribution (a close and slightly fatter relative of the Normal distribution). The T-statistic is unit free, because it has units of X in the numerator and denominator, which cancel. The T-statistic is also immune to changes in scale. I know all the algebra looks a little daunting, but the idea is simple, and it is the basis for a lot of hypothesis testing. See my Excel sheet for an example. Why does the average divided by its standard error take a Normal (or close to Normal) distribution? There is a famous theorem in statistics called the Central Limit Theorem which explains why. This Theorem requires a lot of advanced mathematics to prove, but the basic point is this: No matter what shape the distribution of the X’s take- it could be flat, it could have three modes, etcetera, the mean of the X’s approaches a Normal distribution as n grows large.
Recommended publications
  • Startips …A Resource for Survey Researchers
    Subscribe Archives StarTips …a resource for survey researchers Share this article: How to Interpret Standard Deviation and Standard Error in Survey Research Standard Deviation and Standard Error are perhaps the two least understood statistics commonly shown in data tables. The following article is intended to explain their meaning and provide additional insight on how they are used in data analysis. Both statistics are typically shown with the mean of a variable, and in a sense, they both speak about the mean. They are often referred to as the "standard deviation of the mean" and the "standard error of the mean." However, they are not interchangeable and represent very different concepts. Standard Deviation Standard Deviation (often abbreviated as "Std Dev" or "SD") provides an indication of how far the individual responses to a question vary or "deviate" from the mean. SD tells the researcher how spread out the responses are -- are they concentrated around the mean, or scattered far & wide? Did all of your respondents rate your product in the middle of your scale, or did some love it and some hate it? Let's say you've asked respondents to rate your product on a series of attributes on a 5-point scale. The mean for a group of ten respondents (labeled 'A' through 'J' below) for "good value for the money" was 3.2 with a SD of 0.4 and the mean for "product reliability" was 3.4 with a SD of 2.1. At first glance (looking at the means only) it would seem that reliability was rated higher than value.
    [Show full text]
  • Appendix F.1 SAWG SPC Appendices
    Appendix F.1 - SAWG SPC Appendices 8-8-06 Page 1 of 36 Appendix 1: Control Charts for Variables Data – classical Shewhart control chart: When plate counts provide estimates of large levels of organisms, the estimated levels (cfu/ml or cfu/g) can be considered as variables data and the classical control chart procedures can be used. Here it is assumed that the probability of a non-detect is virtually zero. For these types of microbiological data, a log base 10 transformation is used to remove the correlation between means and variances that have been observed often for these types of data and to make the distribution of the output variable used for tracking the process more symmetric than the measured count data1. There are several control charts that may be used to control variables type data. Some of these charts are: the Xi and MR, (Individual and moving range) X and R, (Average and Range), CUSUM, (Cumulative Sum) and X and s, (Average and Standard Deviation). This example includes the Xi and MR charts. The Xi chart just involves plotting the individual results over time. The MR chart involves a slightly more complicated calculation involving taking the difference between the present sample result, Xi and the previous sample result. Xi-1. Thus, the points that are plotted are: MRi = Xi – Xi-1, for values of i = 2, …, n. These charts were chosen to be shown here because they are easy to construct and are common charts used to monitor processes for which control with respect to levels of microbiological organisms is desired.
    [Show full text]
  • Problems with OLS Autocorrelation
    Problems with OLS Considering : Yi = α + βXi + ui we assume Eui = 0 2 = σ2 = σ2 E ui or var ui Euiuj = 0orcovui,uj = 0 We have seen that we have to make very specific assumptions about ui in order to get OLS estimates with the desirable properties. If these assumptions don’t hold than the OLS estimators are not necessarily BLU. We can respond to such problems by changing specification and/or changing the method of estimation. First we consider the problems that might occur and what they imply. In all of these we are basically looking at the residuals to see if they are random. ● 1. The errors are serially dependent ⇒ autocorrelation/serial correlation. 2. The error variances are not constant ⇒ heteroscedasticity 3. In multivariate analysis two or more of the independent variables are closely correlated ⇒ multicollinearity 4. The function is non-linear 5. There are problems of outliers or extreme values -but what are outliers? 6. There are problems of missing variables ⇒can lead to missing variable bias Of course these problems do not have to come separately, nor are they likely to ● Note that in terms of significance things may look OK and even the R2the regression may not look that bad. ● Really want to be able to identify a misleading regression that you may take seriously when you should not. ● The tests in Microfit cover many of the above concerns, but you should always plot the residuals and look at them. Autocorrelation This implies that taking the time series regression Yt = α + βXt + ut but in this case there is some relation between the error terms across observations.
    [Show full text]
  • On the Meaning and Use of Kurtosis
    Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis.
    [Show full text]
  • The Probability Lifesaver: Order Statistics and the Median Theorem
    The Probability Lifesaver: Order Statistics and the Median Theorem Steven J. Miller December 30, 2015 Contents 1 Order Statistics and the Median Theorem 3 1.1 Definition of the Median 5 1.2 Order Statistics 10 1.3 Examples of Order Statistics 15 1.4 TheSampleDistributionoftheMedian 17 1.5 TechnicalboundsforproofofMedianTheorem 20 1.6 TheMedianofNormalRandomVariables 22 2 • Greetings again! In this supplemental chapter we develop the theory of order statistics in order to prove The Median Theorem. This is a beautiful result in its own, but also extremely important as a substitute for the Central Limit Theorem, and allows us to say non- trivial things when the CLT is unavailable. Chapter 1 Order Statistics and the Median Theorem The Central Limit Theorem is one of the gems of probability. It’s easy to use and its hypotheses are satisfied in a wealth of problems. Many courses build towards a proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject. Not to detract from the majesty of this wonderful result, however, what happens in those instances where it’s unavailable? For example, one of the key assumptions that must be met is that our random variables need to have finite higher moments, or at the very least a finite variance. What if we were to consider sums of Cauchy random variables? Is there anything we can say? This is not just a question of theoretical interest, of mathematicians generalizing for the sake of generalization. The following example from economics highlights why this chapter is more than just of theoretical interest.
    [Show full text]
  • The Bootstrap and Jackknife
    The Bootstrap and Jackknife Summer 2017 Summer Institutes 249 Bootstrap & Jackknife Motivation In scientific research • Interest often focuses upon the estimation of some unknown parameter, θ. The parameter θ can represent for example, mean weight of a certain strain of mice, heritability index, a genetic component of variation, a mutation rate, etc. • Two key questions need to be addressed: 1. How do we estimate θ ? 2. Given an estimator for θ , how do we estimate its precision/accuracy? • We assume Question 1 can be reasonably well specified by the researcher • Question 2, for our purposes, will be addressed via the estimation of the estimator’s standard error Summer 2017 Summer Institutes 250 What is a standard error? Suppose we want to estimate a parameter theta (eg. the mean/median/squared-log-mode) of a distribution • Our sample is random, so… • Any function of our sample is random, so... • Our estimate, theta-hat, is random! So... • If we collected a new sample, we’d get a new estimate. Same for another sample, and another... So • Our estimate has a distribution! It’s called a sampling distribution! The standard deviation of that distribution is the standard error Summer 2017 Summer Institutes 251 Bootstrap Motivation Challenges • Answering Question 2, even for relatively simple estimators (e.g., ratios and other non-linear functions of estimators) can be quite challenging • Solutions to most estimators are mathematically intractable or too complicated to develop (with or without advanced training in statistical inference) • However • Great strides in computing, particularly in the last 25 years, have made computational intensive calculations feasible.
    [Show full text]
  • Lecture 5 Significance Tests Criticisms of the NHST Publication Bias Research Planning
    Lecture 5 Significance tests Criticisms of the NHST Publication bias Research planning Theophanis Tsandilas !1 Calculating p The p value is the probability of obtaining a statistic as extreme or more extreme than the one observed if the null hypothesis was true. When data are sampled from a known distribution, an exact p can be calculated. If the distribution is unknown, it may be possible to estimate p. 2 Normal distributions If the sampling distribution of the statistic is normal, we will use the standard normal distribution z to derive the p value 3 Example An experiment studies the IQ scores of people lacking enough sleep. H0: μ = 100 and H1: μ < 100 (one-sided) or H0: μ = 100 and H1: μ = 100 (two-sided) 6 4 Example Results from a sample of 15 participants are as follows: 90, 91, 93, 100, 101, 88, 98, 100, 87, 83, 97, 105, 99, 91, 81 The mean IQ score of the above sample is M = 93.6. Is this value statistically significantly different than 100? 5 Creating the test statistic We assume that the population standard deviation is known and equal to SD = 15. Then, the standard error of the mean is: σ 15 σµˆ = = =3.88 pn p15 6 Creating the test statistic We assume that the population standard deviation is known and equal to SD = 15. Then, the standard error of the mean is: σ 15 σµˆ = = =3.88 pn p15 The test statistic tests the standardized difference between the observed mean µ ˆ = 93 . 6 and µ 0 = 100 µˆ µ 93.6 100 z = − 0 = − = 1.65 σµˆ 3.88 − The p value is the probability of getting a z statistic as or more extreme than this value (given that H0 is true) 7 Calculating the p value µˆ µ 93.6 100 z = − 0 = − = 1.65 σµˆ 3.88 − The p value is the probability of getting a z statistic as or more extreme than this value (given that H0 is true) 8 Calculating the p value To calculate the area in the distribution, we will work with the cumulative density probability function (cdf).
    [Show full text]
  • Theoretical Statistics. Lecture 5. Peter Bartlett
    Theoretical Statistics. Lecture 5. Peter Bartlett 1. U-statistics. 1 Outline of today’s lecture We’ll look at U-statistics, a family of estimators that includes many interesting examples. We’ll study their properties: unbiased, lower variance, concentration (via an application of the bounded differences inequality), asymptotic variance, asymptotic distribution. (See Chapter 12 of van der Vaart.) First, we’ll consider the standard unbiased estimate of variance—a special case of a U-statistic. 2 Variance estimates n 1 s2 = (X − X¯ )2 n n − 1 i n Xi=1 n n 1 = (X − X¯ )2 +(X − X¯ )2 2n(n − 1) i n j n Xi=1 Xj=1 n n 1 2 = (X − X¯ ) − (X − X¯ ) 2n(n − 1) i n j n Xi=1 Xj=1 n n 1 1 = (X − X )2 n(n − 1) 2 i j Xi=1 Xj=1 1 1 = (X − X )2 . n 2 i j 2 Xi<j 3 Variance estimates This is unbiased for i.i.d. data: 1 Es2 = E (X − X )2 n 2 1 2 1 = E ((X − EX ) − (X − EX ))2 2 1 1 2 2 1 2 2 = E (X1 − EX1) +(X2 − EX2) 2 2 = E (X1 − EX1) . 4 U-statistics Definition: A U-statistic of order r with kernel h is 1 U = n h(Xi1 ,...,Xir ), r iX⊆[n] where h is symmetric in its arguments. [If h is not symmetric in its arguments, we can also average over permutations.] “U” for “unbiased.” Introduced by Wassily Hoeffding in the 1940s. 5 U-statistics Theorem: [Halmos] θ (parameter, i.e., function defined on a family of distributions) admits an unbiased estimator (ie: for all sufficiently large n, some function of the i.i.d.
    [Show full text]
  • Probability Distributions and Error Bars
    Statistics and Data Analysis in MATLAB Kendrick Kay, [email protected] Lecture 1: Probability distributions and error bars 1. Exploring a simple dataset: one variable, one condition - Let's start with the simplest possible dataset. Suppose we measure a single quantity for a single condition. For example, suppose we measure the heights of male adults. What can we do with the data? - The histogram provides a useful summary of a set of data—it shows the distribution of the data. A histogram is constructed by binning values and counting the number of observations in each bin. - The mean and standard deviation are simple summaries of a set of data. They are parametric statistics, as they make implicit assumptions about the form of the data. The mean is designed to quantify the central tendency of a set of data, while the standard deviation is designed to quantify the spread of a set of data. n ∑ xi mean(x) = x = i=1 n n 2 ∑(xi − x) std(x) = i=1 n − 1 In these equations, xi is the ith data point and n is the total number of data points. - The median and interquartile range (IQR) also summarize data. They are nonparametric statistics, as they make minimal assumptions about the form of the data. The Xth percentile is the value below which X% of the data points lie. The median is the 50th percentile. The IQR is the difference between the 75th and 25th percentiles. - Mean and standard deviation are appropriate when the data are roughly Gaussian. When the data are not Gaussian (e.g.
    [Show full text]
  • Examples of Standard Error Adjustment In
    Statistical Analysis of NCES Datasets Employing a Complex Sample Design > Examples > Slide 11 of 13 Examples of Standard Error Adjustment Obtaining a Statistic Using Both SRS and Complex Survey Methods in SAS This resource document will provide you with an example of the analysis of a variable in a complex sample survey dataset using SAS. A subset of the public-use version of the Early Child Longitudinal Studies ECLS-K rounds one and two data from 1998 accompanies this example, as well as an SAS syntax file. The stratified probability design of the ECLS-K requires that researchers use statistical software programs that can incorporate multiple weights provided with the data in order to obtain accurate descriptive or inferential statistics. Research question This dataset training exercise will answer the research question “Is there a difference in mathematics achievement gain from fall to spring of kindergarten between boys and girls?” Step 1- Get the data ready for use in SAS There are two ways for you to obtain the data for this exercise. You may access a training subset of the ECLS-K Public Use File prepared specifically for this exercise by clicking here, or you may use the ECLS-K Public Use File (PUF) data that is available at http://nces.ed.gov/ecls/dataproducts.asp. If you use the training dataset, all of the variables needed for the analysis presented herein will be included in the file. If you choose to access the PUF, extract the following variables from the online data file (also referred to by NCES as an ECB or “electronic code book”): CHILDID CHILD IDENTIFICATION NUMBER C1R4MSCL C1 RC4 MATH IRT SCALE SCORE (fall) C2R4MSCL C2 RC4 MATH IRT SCALE SCORE (spring) GENDER GENDER BYCW0 BASE YEAR CHILD WEIGHT FULL SAMPLE BYCW1 through C1CW90 BASE YEAR CHILD WEIGHT REPLICATES 1 through 90 BYCWSTR BASE YEAR CHILD STRATA VARIABLE BYCWPSU BASE YEAR CHILD PRIMARY SAMPLING UNIT Export the data from this ECB to SAS format.
    [Show full text]
  • Lecture 14 Testing for Kurtosis
    9/8/2016 CHE384, From Data to Decisions: Measurement, Kurtosis Uncertainty, Analysis, and Modeling • For any distribution, the kurtosis (sometimes Lecture 14 called the excess kurtosis) is defined as Testing for Kurtosis 3 (old notation = ) • For a unimodal, symmetric distribution, Chris A. Mack – a positive kurtosis means “heavy tails” and a more Adjunct Associate Professor peaked center compared to a normal distribution – a negative kurtosis means “light tails” and a more spread center compared to a normal distribution http://www.lithoguru.com/scientist/statistics/ © Chris Mack, 2016Data to Decisions 1 © Chris Mack, 2016Data to Decisions 2 Kurtosis Examples One Impact of Excess Kurtosis • For the Student’s t • For a normal distribution, the sample distribution, the variance will have an expected value of s2, excess kurtosis is and a variance of 6 2 4 1 for DF > 4 ( for DF ≤ 4 the kurtosis is infinite) • For a distribution with excess kurtosis • For a uniform 2 1 1 distribution, 1 2 © Chris Mack, 2016Data to Decisions 3 © Chris Mack, 2016Data to Decisions 4 Sample Kurtosis Sample Kurtosis • For a sample of size n, the sample kurtosis is • An unbiased estimator of the sample excess 1 kurtosis is ∑ ̅ 1 3 3 1 6 1 2 3 ∑ ̅ Standard Error: • For large n, the sampling distribution of 1 24 2 1 approaches Normal with mean 0 and variance 2 1 of 24/n 3 5 • For small samples, this estimator is biased D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and Kurtosis”, The Statistician, 47(1),183–189 (1998).
    [Show full text]
  • Covariances of Two Sample Rank Sum Statistics
    JOURNAL OF RESEARCH of the National Bureou of Standards - B. Mathematical Sciences Volume 76B, Nos. 1 and 2, January-June 1972 Covariances of Two Sample Rank Sum Statistics Peter V. Tryon Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302 (November 26, 1971) This note presents an elementary derivation of the covariances of the e(e - 1)/2 two-sample rank sum statistics computed among aU pairs of samples from e populations. Key words: e Sample proble m; covariances, Mann-Whitney-Wilcoxon statistics; rank sum statistics; statistics. Mann-Whitney or Wilcoxon rank sum statistics, computed for some or all of the c(c - 1)/2 pairs of samples from c populations, have been used in testing the null hypothesis of homogeneity of dis­ tribution against a variety of alternatives [1, 3,4,5).1 This note presents an elementary derivation of the covariances of such statistics under the null hypothesis_ The usual approach to such an analysis is the rank sum viewpoint of the Wilcoxon form of the statistic. Using this approach, Steel [3] presents a lengthy derivation of the covariances. In this note it is shown that thinking in terms of the Mann-Whitney form of the statistic leads to an elementary derivation. For comparison and completeness the rank sum derivation of Kruskal and Wallis [2] is repeated in obtaining the means and variances. Let x{, r= 1,2, ... , ni, i= 1,2, ... , c, be the rth item in the sample of size ni from the ith of c populations. Let Mij be the Mann-Whitney statistic between the ith andjth samples defined by n· n· Mij= ~ t z[J (1) s=1 1' = 1 where l,xJ~>xr Zr~= { I) O,xj";;;x[ } Thus Mij is the number of times items in the jth sample exceed items in the ith sample.
    [Show full text]