Concurrent Pseudomonas Periorbital Necrotizing Fasciitis and Endophthalmitis: a Case Report and Literature Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low Level Light Therapy for the Treatment of Recalcitrant Chalazia: a Sample Case Summary
Clinical Ophthalmology Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Low level light therapy for the treatment of recalcitrant chalazia: a sample case summary This article was published in the following Dove Press journal: Clinical Ophthalmology Karl Stonecipher1 Purpose: To evaluate the effects of low-level light therapy (LLLT) on the resolution of Richard Potvin 2 recalcitrant chalazia. Patients and Methods: This was a single-site retrospective chart review of patients with 1Physicians Protocol, Greensboro, NC, USA; 2Science in Vision, Akron, NY, USA chalazia, all of whom were unresponsive to previous pharmaceutical therapy or surgical intervention, who received a 15 min LLLT treatment in conjunction with a standard phar- maceutical regimen. A second treatment was applied 24 hrs to as late as 2 months if there was no evidence of progression of resolution in appearance. Results: A total of 26 eyes of 22 patients with relevant history and treatment were reviewed, all with a history of prior pharmaceutical treatment for their chalazia. After a single 15 min LLLT treatment, followed by a standard pharmaceutical regimen, 46% of eyes (12/26) showed resolution of their chalazia. Resolution was noted from 3 days to one-month post- treatment. With a second treatment, the chalazia resolved in 92% of eyes (24/26). Only two For personal use only. eyes of the 26 (8%) required incision and curettage after LLLT treatment. Conclusion: The use of LLLT for the treatment of recalcitrant chalazia appears to be beneficial in patients who have failed topical and/or systemic therapy, significantly reducing the likelihood of requiring surgical intervention. -
Differentiate Red Eye Disorders
Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular -
Eyelid and Orbital Infections
27 Eyelid and Orbital Infections Ayub Hakim Department of Ophthalmology, Western Galilee - Nahariya Medical Center, Nahariya, Israel 1. Introduction The major infections of the ocular adnexal and orbital tissues are preseptal cellulitis and orbital cellulitis. They occur more frequently in children than in adults. In Schramm's series of 303 cases of orbital cellulitis, 68% of the patients were younger than 9 years old and only 17% were older than 15 years old. Orbital cellulitis is less common, but more serious than preseptal. Both conditions happen more commonly in the winter months when the incidence of paranasal sinus infections is increased. There are specific causes for each of these types of cellulitis, and each may be associated with serious complications, including vision loss, intracranial infection and death. Studies of orbital cellulitis and its complication report mortality in 1- 2% and vision loss in 3-11%. In contrast, mortality and vision loss are extremely rare in preseptal cellulitis. 1.1 Definitions Preseptal and orbital cellulites are the most common causes of acute orbital inflammation. Preseptal cellulitis is an infection of the soft tissue of the eyelids and periocular region that is localized anterior to the orbital septum outside the bony orbit. Orbital cellulitis ( 3.5 per 100,00 ) is an infection of the soft tissues of the orbit that is localized posterior to the orbital septum and involves the fat and muscles contained within the bony orbit. Both types are normally distinguished clinically by anatomic location. 1.2 Pathophysiology The soft tissues of the eyelids, adnexa and orbit are sterile. Infection usually originates from adjacent non-sterile sites but may also expand hematogenously from distant infected sites when septicemia occurs. -
Hypotony Following Intravitreal Silicone Oil Removal in a Patient with a Complex Retinal Detachment with Giant Retinal Tear
Open Access Case Report DOI: 10.7759/cureus.16387 Hypotony Following Intravitreal Silicone Oil Removal in a Patient With a Complex Retinal Detachment With Giant Retinal Tear Ilias Gkizis 1 , Christina Garnavou-Xirou 1 , Georgios Bontzos 1 , Georgios Smoustopoulos 1 , Tina Xirou 1 1. Ophthalmology, Korgialenio-Benakio General Hospital, Athens, GRC Corresponding author: Georgios Smoustopoulos, [email protected] Abstract Postoperative ocular hypotony after silicone oil removal in complex cases of retinal detachment is a complication that can occur in about 20% of cases and can prevent the successful management of retinal detachments. Thus, it is critical to understand the mechanisms of hypotony and the potential interventions that can be done in order to avoid irreversible tissue damage. We present a case of a 35-year-old man who underwent intraocular surgery for removal of silicone oil tamponade following a combined scleral buckling and pars plana vitrectomy (PPV) surgery for a rhegmatogenous retinal detachment associated with a giant retinal tear. On Day 1 after the operation, the patient was found to have hypotony with optic disc edema, chorioretinal folds, and visual acuity of ‘hand movement’ perception. Two weeks postop, the patient’s condition stabilized, with a visual acuity of 0.38 logMAR, an intraocular pressure (IOP) of 12 mmHg, and the absence of macular edema. Categories: Ophthalmology Keywords: hypotony, silicone oil removal, retinal detachment, vitrectomy, giant retinal tear Introduction Ocular hypotony is defined as intraocular pressure (IOP) of 5 mmHg or less. Depending on the duration and time of onset, it can be classified as acute, chronic, transient, or permanent. Whilst acute hypotony is not an uncommon phenomenon following intraocular surgery, it is generally reversible after 10-15 days [1]. -
Epiphora During the First Year of Life
Eye (1991) 5, 596--600 Epiphora During the First Year of Life C. J. MACEWEN and J. D. H. YOUNG Dundee Summary A cohort of 4,792 infants was observed in order to determine the incidence and natu ral history of epiphora during the first year of life. Evidence of defective lacrimal drainage was present in 964 (20%) at some time during the year. 9S�/o became symp tomatic during the first month of life. Spontaneous remission occurred throughout the year and 96% had resolved before the age of one. This study provides no evidence to support probing before the age of one year. Infants with epiphora are a common problem haps the most reliable estimate of the inci in clinical ophthalmology. It is generally dence is 6%. This comes from a follow-up accepted that the condition is the result of a study of 200 consecutive, unselected newborn congenital abnormality of the lacrimal drain infants.7 age system, in the form of a membranous Information on the rate of spontaneous obstruction at the lower end of the naso-lac remission is also limited. The studies that are rimal duct (NLD). I In addition it is recognised available were based on small clinic popula that there is a high rate of spontaneous resol tions, referred for treatment of their epiphora ution.2•3 However, despite it's frequency, rela and probing was usually undertaken in a tively little is known about the incidence or number of cases before the end of the year.2,3 natural history of epiphora in young children. -
Special Considerations in Cataract Surgery: Five Cornea Challenges
Clinical Update EXTRA CONTENT AVAILABLE CATARACT Special Considerations in Cataract Surgery: Five Cornea Challenges by linda roach, contributing writer interviewing preston h. blomquist, md, rosa a. braga-mele, md, kimberly a. drenser, md, phd, herbert e. kaufman, md, marguerite mcdonald, md, and roger f. steinert, md s the most common surgical choices, said Marguerite McDonald, IOL Selection procedure in ophthalmol- MD, of Lynbrook, N.Y. The device en- ogy, replacement of a cloudy ables the surgeon to directly measure 1 crystalline lens with an the eye’s aphakic refractive power in intraocular lens (IOL) usu- the operating room. Aally presents the ophthalmologist with Using intraoperative aberrometry is familiar sets of surgical routines. But becoming more commonplace, as “it what about those cases that involve may help in achieving more accuracy comorbidities or other complicating with IOL power selection,” Dr. Mc- factors? Donald said. Several experts shared their per- Tips on IOL selection. The chosen spectives on approaching out-of-the- IOL should be shaped to neutralize After an off-center LASIK procedure ordinary cataract surgeries in ways spherical aberrations, said Rosa A. such as this, the irregularity of the that offer the best chance at optimiz- Braga-Mele, MD, at the University of corneal topography indicates that a ing patient outcomes. This month, Toronto. “In anybody who has had multifocal IOL should be avoided. here’s a look at five challenges involv- myopic LASIK or PRK, I think it’s very ing the cornea. important to use a negatively aspheric prior to cataract surgery. 2) A dysfunc- IOL, because these patients have more tional, unstable tear film will affect the Challenge: Prior Refractive Surgery positively aberrant corneas. -
Olivia Steinberg ICO Primary Care/Ocular Disease Resident American Academy of Optometry Residents Day Submission
Olivia Steinberg ICO Primary Care/Ocular Disease Resident American Academy of Optometry Residents Day Submission The use of oral doxycycline and vitamin C in the management of acute corneal hydrops: a case comparison Abstract- We compare two patients presenting to clinic with an uncommon complication of keratoconus, acute corneal hydrops. Management of the patients differs. One heals quickly, while the other has a delayed course to resolution. I. Case A a. Demographics: 40 yo AAM b. Case History i. CC: red eye, tearing, decreased VA x 1 day OS ii. POHx: (+) keratoconus OU iii. PMHx: depression, anxiety, asthma iv. Meds: Albuterol, Ziprasidone v. Scleral CL wearer for approximately 6 months OU vi. Denies any pain OS, denies previous occurrence OU, no complaints OD c. Pertinent Findings i. VA cc (CL’s)- 20/25 OD, 20/200 PH 20/60+2 OS ii. Slit Lamp 1. Inferior corneal thinning and Fleisher ring OD, central scarring OD, 2+ diffuse microcystic edema OS, Descemet’s break OS (photos and anterior segment OCT) 2. 2+ diffuse injection OS 3. D&Q A/C OU iii. Intraocular Pressures: deferred OD due to CL, 9mmHg OS (tonopen) iv. Fundus Exam- unremarkable OU II. Case B a. Demographics: 39 yo AAM b. Case History i. CC: painful, red eye, tearing, decreased VA x 1 day OS ii. POHx: unremarkable iii. PMHx: hypertension iv. Meds: unknown HTN medication v. Wears Soflens toric CL’s OU; reports previous doctor had difficulty achieving proper fit OU; denies diagnosis of keratoconus OU vi. Denies any injury OS, denies previous occurrence OU, no complaints OD c. -
BLINDNESS in MONGOLISM (DOWN's SYNDROME)*T by J
Br J Ophthalmol: first published as 10.1136/bjo.47.6.331 on 1 June 1963. Downloaded from Brit. J. Ophthal. (1963) 47, 331. BLINDNESS IN MONGOLISM (DOWN'S SYNDROME)*t BY J. F. CULLENt The Wilmer Institute, Johns Hopkins University and Hospital, Baltimore, Maryland IN a previous communication (Cullen and Butler, 1963), the ocular abnor- malities encountered in a survey of 143 mongoloids at the Rosewood State Hospital in Maryland were enumerated, and particular attention was drawn to the occurrence of keratoconus in over 5 per cent. of these patients. The purpose of this paper is to elaborate the incidence and causes of blindness in this same group. In the earlier paper no mention was made of the fact that several blind mongoloids were discovered among those examined, and, as the cause of blindness was in all but one instance associated with cataract or keratoconus, they were classified under these aetiological headings. Earlier surveys of the ocular abnormalities in mongoloids by Ormond (1912), Lowe (1949), Skeller and Oster (1951), and Woillez and Dansaut (1960) do not list any patient as being blind. More recently Eissler and Longenecker (1962) reviewed the ocular findings in 396 mongoloids and, though they made no attempt to compile uncommon ocular conditions, they did not state whether any of this very large number of patients were blind. When one considers that serious ocular conditions occur so com- monly in mongoloids, and that the eyes of such patients might be expected to respond unfavourably to trauma or to surgical insult, it is surprising that http://bjo.bmj.com/ no reference has hitherto been made to the not unexpected occurrence of blindness, particularly if they survive for more than 30 years. -
Changes in Ocular Rigidityin Endocrine Exophthalmos
Br J Ophthalmol: first published as 10.1136/bjo.42.11.680 on 1 November 1958. Downloaded from Brit. J. Ophthal. (1958) 42, 680. CHANGES IN OCULAR RIGIDITY IN ENDOCRINE EXOPHTHALMOS* BY R. WEEKERS AND G. LAVERGNE From the Ophthalmological Clinic, Lie'ge University Two types of endocrine exophthalmos are frequently distinguished, being referred to thyrotoxic or hyperthyroid exophthalmos, and thyrotropic, ophthahnoplegic, or oedematous exophthalmos. (a) Hyperthyroid or Thyrotoxic Exophthalmos.-This accompanies Graves's disease and is, therefore, much more frequently seen in females than in males. In the majority of cases the exophthalmos is quite unobtrusive or there is merely an appearance of exophthalmos due to retraction of the upper lid. It is associated with a decreased frequency of blinking and a fixed stare. The majority of authors agree that these symptoms should be attributed to an increase in tone of the sym- pathetic system. The importance of the pituitary thyrotropic hormone in thiscopyright. clinical picture is not clear. Hyperthyroid exophthalmos is not complicated either by chemosis or by diplopia, but heterophoria and lack of convergence are often seen. (b) Thyrotropic, Ophthalmoplegic, or Oedematous Exophthalmos.-This may occur either in a subject suffering from verified and treated hyperthyroidism, when the signs of thyrotoxicosis are about to disappear, or in an apparently normal subject free from any thyroid symptom or history of symptoms. The second type http://bjo.bmj.com/ is more frequently seen in males than in females. Thyrotropic exophthalmos is often very marked'and may even lead to irreducible lagophthalmos; it is invariably associated with a disturbance of ocular movements, particularly with elevation of the gaze. -
Clinical Characteristics and Outcomes of Paediatric Orbital Cellulitis in Hospital Universiti Sains Malaysia: a Five-Year Review
Singapore Med J 2020; 61(6): 312-319 Original Article https://doi.org/10.11622/smedj.2019121 Clinical characteristics and outcomes of paediatric orbital cellulitis in Hospital Universiti Sains Malaysia: a five-year review Ismail Mohd-Ilham1,2, MBBS, MMed, Abd Bari Muhd-Syafi1,2, MBBS, Sonny Teo Khairy-Shamel1,2, MD, MMed, Ismail Shatriah1,2, MD, MMed INTRODUCTION Limited data is available on paediatric orbital cellulitis in Asia. We aimed to describe demographic data, clinical presentation, predisposing factors, identified microorganisms, choice of antibiotics and management in children with orbital cellulitis treated in a tertiary care centre in Malaysia. METHODS A retrospective review was performed on children with orbital cellulitis aged below 18 years who were admitted to Hospital Universiti Sains Malaysia, Kelantan, Malaysia, between January 2013 and December 2017. RESULTS A total of 14 paediatric patients fulfilling the diagnostic criteria for orbital cellulitis were included. Their mean age was 6.5 ± 1.2 years. Boys were more likely to have orbital cellulitis than girls (71.4% vs. 28.6%). Involvement of both eyes was observed in 14.3% of the patients. Sinusitis (28.6%) and upper respiratory tract infection (21.4%) were the most common predisposing causes. Staphylococcus aureus (28.6%) was the leading pathogen. Longer duration of hospitalisation was observed in those infected with methicillin-resistant Staphylococcus aureus and Burkholderia pseudomallei. 10 (71.4%) patients were treated with a combination of two or three antibiotics. In this series, 42.9% had surgical interventions. CONCLUSION Young boys were found to be more commonly affected by orbital cellulitis than young girls. -
Preseptal and Orbital Cellulitis
Journal of Microbiology and Infectious Diseases / 2014; 4 (3): 123-127 JMID doi: 10.5799/ahinjs.02.2014.03.0154 REVIEW ARTICLE Preseptal and orbital cellulitis Emine Akçay, Gamze Dereli Can, Nurullah Çağıl Yıldırım Beyazıt Univ. Medical Faculty Atatürk Training and Research Hospital Dept. of Ophthalmology, Ankara, Turkey ABSTRACT Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneu- moniae, S. epidermidis, Haempphilus influenzae, Moraxella catarrhalis and S. pyogenes. The method for the diagnosis of OS and PS is computed tomography. Using effective antibiotics is a mainstay for the treatment of PC and OC. There is an agreement that surgical drainage should be performed in cases of complete ophthalmoplegia or significant visual impairment or large abscesses formation. This infections are also at a greater risk of acute visual loss, cavernous sinus thrombosis, meningitis, cerebritis, endo- phthalmitis, and brain abscess in children. Early diagnosis and appropriate treatment are crucial to control the infection. Diagnosis, treatment, management and complications of PC and OC are summarized in this manuscript. J Microbiol Infect Dis 2014; 4(3): 123-127 Key words: infection, cellulitis, orbita, preseptal, diagnosis, treatment Preseptal ve Orbital Sellülit ÖZET Preseptal selülit (PS) göz kapağı ve çevresindeki dokunun iltihabi reaksiyonu iken orbital selülit (OS) orbitayı ve onun içeriğini etkileyen septum arkası dokuların iltihabıdır. -
Orbital Cellulitis Management Guideline – for Adults & Paeds
ORBITAL CELLULITIS MANAGEMENT GUIDELINE – FOR ADULTS & PAEDS Authors: Stephen Ball, Arthur Okonkwo, Steven Powell, Sean Carrie Orbital cellulitis management guideline – For Adults & Paeds Is it limited to Preseptal Cellulitis? i.e. Eyelid only & eye not involved Oral Co-amoxiclav (clindamycin if penicillin allergic) Consider treating as an outpatient with review in eye casualty in 24-48 hours No Indication for admission – any of: Clinical suspicion of post-septal cellulitis Baseline Investigations Pyrexia FBC, CRP, lactate (& blood culture if Immunocompromised pyrexia) Had 36-48 hours of oral antibiotics Endonasal swab <12 months old unable to assess eye due to swelling Yes Medical management Discharge ADULTS – iv Tazocin (allergy; Iv clindamycin & iv ciprofloxacin) Discharge once swelling PAEDS – iv co-amoxiclav (allergy; iv cefuroxime & has resolved and metronidazole if mild allergy - other allergy discuss with micro) pyrexia settled with IMMUNOCOMPROMISED - discuss all with microbiology/ID oral antibiotics; Consider nasal Otrivine & nasal steroids -co-amoxiclav 4 hourly eye & neuro-observations -clindamycin if Urgent Ophthalmology assessment & daily review penicillin allergic Urgent Otolaryngology assessment & daily review Yes Indication for imaging CNS involvement NO - Discuss Unable to examine eye/open eyelids with Eye signs – any of: proptosis, restriction/pain microbiology/ID on eye movement, chemosis, RAPD, reduced visual acuity/colour vision/visual field, optic nerve swelling No Failure to improve or continued pyrexia after 36-48 hours IV antibiotics Improvement in 36-48 hours Contrast enhanced CT Orbit, Sinuses and Brain Continue medical management, rescan if failure to improve after 36-48 Orbital Collection No Orbital Collection Outpatient Treatment hours Admission Surgical management Medical Management Approach depends on local skill set o Evacuation of orbital pus Imaging o Drainage of paranasal sinus pus Discuss any intracranial complication with both neurosurgery & Microbiology Surgical Management .