The Cryosphere, 15, 459–478, 2021 https://doi.org/10.5194/tc-15-459-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c Martim Mas e Braga1,2, Jorge Bernales3, Matthias Prange3, Arjen P. Stroeven1,2, and Irina Rogozhina4 1Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden 2Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 3MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany 4Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway Correspondence: Martim Mas e Braga (
[email protected]) Received: 20 April 2020 – Discussion started: 25 May 2020 Revised: 17 December 2020 – Accepted: 18 December 2020 – Published: 28 January 2021 Abstract. Studying the response of the Antarctic ice sheets at intermediate depths, which leads to a collapse of the West during periods when climate conditions were similar to the Antarctic Ice Sheet if sustained for at least 4000 years. present can provide important insights into current observed changes and help identify natural drivers of ice sheet retreat. In this context, the marine isotope substage 11c (MIS11c) in- terglacial offers a suitable scenario, given that during its later 1 Introduction portion orbital parameters were close to our current inter- glacial. Ice core data indicate that warmer-than-present tem- Lasting for as much as 30 kyr (thousand years), between peratures lasted for longer than during other interglacials. 425 and 395 ka (thousand years ago), marine isotope sub- However, the response of the Antarctic ice sheets and their stage 11c (hereafter MIS11c) was the longest interglacial of contribution to sea level rise remain unclear.