Solitonic Josephson Thermal Transport

Total Page:16

File Type:pdf, Size:1020Kb

Solitonic Josephson Thermal Transport Solitonic Josephson thermal transport Claudio Guarcello,1, 2, ∗ Paolo Solinas,3 Alessandro Braggio,1 and Francesco Giazotto1 1NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy 2Radiophysics Department, Lobachevsky State University, Gagarin Avenue 23, 603950 Nizhni Novgorod, Russia 3SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy (Dated: March 22, 2018) We explore the coherent thermal transport sustained by solitons through a long Josephson junc- tion, as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Correspondingly, the junction warms up in correspondence of the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath temperature Tbath = 4:2 K. The thermal effects on the dynamics of the soliton are also discussed. Markedly, this system inherits the topological robustness of the solitons. In view of these results, the proposed device can effectively find an application as a superconducting thermal router in which the thermal transport can be locally mastered through solitonic excitations, which positions can be externally controlled through a magnetic field and a bias current. I. INTRODUCTION manipulation of heat currents in mesoscopic supercon- ducting devices. Here, the aim is to design and realize The physics of coherent excitations has relevant im- thermal components able to master the energy transfer plications in the field of condensed matter. Such co- with a high degree of accuracy. In this regard, we pro- herent objects emerge in several extended systems and pose to lay the foundation of a new branch of fast co- are usually characterized by remarkable particle-like fea- herent caloritronics based on solitons, with the end to tures. In the past decades, these notions played a crucial build up new devices exploiting this highly-controllable, role for understanding various issues in different areas of “phase-coherent” thermal flux. Specifically, the feasibility the physics of continuous and discrete systems [1, 2]. A of using a LJJ as a thermal router [36], in which ther- Josephson junction (JJ) is a model system to appreciate mal transport can be locally handled through solitonic coherent excitations, and, specifically, a superconductor- excitations, is very promising. insulator-superconductor (SIS) long JJ (LJJ) is the pro- After the earlier prediction in 1965 by Maki and totypal solid-state environment to explore the dynamics Griffin [37], only recently phase-coherent thermal trans- of a peculiar kind of solitary waves, called soliton [3, 4]. port in temperature-biased Josephson devices has been These excitations give rise to readily measurable physical confirmed experimentally in several interferometer-like phenomena, such as step structures in the I-V character- structures [38–43]. The thermal modulation induced by istic of LJJs and microwaves radiation emission. More- the external magnetic field was demonstrated in super- over, a soliton has a clear physical meaning in the LJJ conducting quantum-interference devices (SQUID) [38, framework, since it carries a quantum of magnetic flux, 39] and short JJs [40, 41]. Furthermore, in LJJs the induced by a supercurrent loop surrounding it, with the heat current diffraction patterns in the presence of an local magnetic field perpendicularly oriented with respect in-plane external magnetic field have been discussed the- to the junction length [5]. Thus, solitons in the context of oretically [44]. However, until now no efforts have been LJJs are usually referred to as fluxons or Josephson vor- addressed to explore how thermal transport across a LJJ tices. Measured for the first time more than 40 years is influenced by solitons eventually set along it. Nonethe- ago [6, 7], LJJs are still nowadays an active research less, it has been demonstrated theoretically that the pres- field [8–26]. Indeed, the fact that a single topologically ence of a fluxon threading a temperature-biased inductive protected excitation, i.e., a flux quantum, can be moved SQUID modifies thermal transport and affects the steady and controlled by bias currents, created by the magnetic temperatures of a floating electrode of the device [45, 46]. field, manipulated through shape engineering [9, 27–30], Similarly, we demonstrate theoretically that a fluxon ar- or pinned by inhomogeneities [31, 32], naturally stimu- ranged within a LJJ locally affects, in a fast timescale, lated a profusion of ideas and applications. arXiv:1712.00259v3 [cond-mat.mes-hall] 21 Mar 2018 the thermal evolution of the system, and, at the same Practically, several electric and magnetic features con- time, we discuss how the temperature gradient affects cerning solitons in LJJs were comprehensively hitherto the soliton dynamics. Finally, being solitons, namely, re- explored, but little is known about the soliton-sustained markably stable and robust objects [47], at the core of coherent thermal transport through a temperature- its operation, this system provides an intrinsic topologi- biased junction. This issue falls into the emerging field cal protection on thermal transport. of coherent caloritronics [33–35], which deals with the The paper is organized as follows. In Sec. II, the the- oretical background used to describe the phase evolution of a magnetically-driven LJJ is discussed. In Sec. III, ∗ [email protected] the thermal balance equation and the heat currents are 2 y (a) y ϕ (b) Pheat 2π soliton Hz(t) Hz(t) d Pin 0 D2 z Pe-ph x L W x FIG. 1. a, A superconductor-insulator-superconductor (SIS) rectangular long Josephson junction (LJJ) excited by an external in-plane magnetic field Hz(t). The length and the width of the junction are L λJ and W λJ , respectively, where λJ is the Josephson penetration depth. Moreover, the thickness D2 λJ of the electrode S2 is indicated. A soliton within the junction, corresponding to a 2π-twist of the phase ', is represented. Ti is the temperature of the superconductor Si and d is the insulating layer thickness. b, Thermal model of the device, as the thermal contact with a phonon bath is taken into account. The heat current, Pin, flowing through the junctions depends on the temperatures and the solitons eventually set along the system. Pe−ph represents the coupling between quasiparticles in S2 and the lattice phonons residing at Tbath, whereas Pheat denotes the power injected into S1 through heating probes in order to impose a fixed quasiparticle temperature T1. The arrows indicate the direction of heat currents for T1 > T2 > Tbath. introduced. In Sec. IV, the evolution of the temperature a long and narrow junction, we assume that W λJ of the floating electrode is studied, as a thermal gradi- and L λ , where we introduced the length scale q J ent across the system is taken into account. In Sec. V, λ = Φ0 1 called Josephson penetration depth, conclusions are drawn. J 2πµ0 tdJc where Jc = Ic=A is the critical current area density. Then, in normalized units, the linear dimensions of the junction read L = L/λJ 1 and W = W/λJ 1. II. PHASE DYNAMICS The electrodynamics of a LJJ is usually described by a partial differential equation for the order parameter In Fig. 1a long and narrow SIS Josephson junction, in phase difference ', namely, the perturbed sine-Gordon the so-called overlap geometry, formed by two supercon- (SG) equation, that in the normalized units x = x/λJ ducting electrodes S and S separated by a thin layer of q e 1 2 2π Ic and t = !pt, with !p = being the Josephson insulating material with thickness d is represented. We e Φ0 C consider an extended junction with both the length and plasma frequency [48], reads [48, 49] the width larger than d (namely, W; L d). In the ge- @2'(x; t) @2'(x; t) @'(x; t) ometry depicted in Fig. 1, the junction area A = WL e e − e e − sin ' x; t = α e e : (1) 2 e e extends in the xz-plane, the electric bias current is even- @xe @et2 @et tually flowing in the y direction, and the external mag- The boundary conditions of this equation takes into ac- netic field is applied in the z direction. The thickness count the normalized external magnetic field H(t) = of each superconducting electrode is assumed larger than 2π Φ µ tdλJ H(t) the London penetration depth λL;i of the electrodes ma- 0 0 terial. Since the applied field penetrates the supercon- d'(0; t) d'(L; t) ducting electrodes up to a thickness given by the London = = H(t): (2) penetration depth, an effective magnetic thickness of the dxe dxe −1 junction td = λL;1 + λL;2 + d can be defined. If λL;i In Eq. (1), α = (!pRC) is the damping parameter are larger than the thickness of the electrodes Di, the (with R and C being the total normal resistance and effective magnetic thickness has to be replaced by t~d = capacitance of the JJ). λL;1 tanh (D1=2λL;1) + λL;2 tanh (D2=2λL;2) + d [40, 41]. The SG equation admits topologically stable In the presence of an external in-plane magnetic field travelling-wave solutions, called solitons [3, 4], cor- H(r; t) = (0; 0; −H(t) bz), the phase ', namely, the phase responding to 2π-twists of the phase (see Fig. 2). For difference between the wavefunctions describing the carri- the unperturbed SG equation, i.e., α = 0 in Eq. (1), ers in the superconducting electrodes, changes according solitons have the simple analytical expression [48] 2π to @'(x; t)=@x = µ0tdH(t) [48], where Φ0 = h=2e ' Φ0 2 × 10−15Wb is the magnetic flux quantum (with e and 8 2 39 < xe − xe0 − uet = h being the electron charge and the Planck constant, '(x − uet) = 4 arctan exp 4± p 5 ; (3) e 1 − u2 respectively), and µ0 is the vacuum permeability.
Recommended publications
  • Superconductivity and SQUID Magnetometer
    11 Superconductivity and SQUID magnetometer Basic knowledge Superconductivity (critical temperature, BCS-Theory, Cooper pairs, Type 1 and Type 2 superconductor, Penetration Depth, Meissner-Ochsenfeld effect, etc), High temperature superconductors, Weak links and Josephson effects (DC and AC), the voltage-current U(I) characteristic, SQUID: structure, applications, sensitivity, functionality, screening current, voltage-magnetic flux characteristic) Literature [1] Ibach, Lüth, Festkörperphysik, Springer Verlag [2] Buckel, Supraleitung, VCH Weinheim [3] Sawaritzki, Supraleitung, Harri Deutsch [4] C. Kittel, Introduction of the Solid State Physics, John Wiley & Sons Inc. [5] N. W. Ashcroft and N. D. Mermin, “Solid State Physics” [6] STAR Cryoelectronics, Mr. SQUID® User’s Guide [7] http://en.wikipedia.org/wiki/Superconductor [8] http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html [9] http://hyperphysics.phy-astr.gsu.edu/Hbase/solids/scond.html#c1 [10] http://www.lancs.ac.uk/ug/murrays1/bcs.html [11] http://www.superconductors.org/Type1.htm Experiment 11, Page 1 Content: 1. Introduction………………………………..…………………………… 3 2. Basic knowledge………………………………………..………………4 Superconductivity BCS theory Cooper pairs Type I and Type II superconductors Meissner-Ochsenfeld effect Josephson contacts Josephson effects U-I characteristic Dc SQUID 3. Experimental setup………………………………………….….….13 4. Experiment…………………………………….………………….…14 4.1 Preparing the SQUID 4.2 Determination of the critical temperature of the YBCO-SQUID 4.3 Voltage – current characteristic 4.4 Voltage – magnetic flux characteristic 4.5 Qualitative experiments 5. Schedule and analysis………………………………..………....19 Questions……………………………………………...……….……….19 Experiment 11, Page 2 1. Introduction The aim of the present experiment is to give an insight into the main properties of superconductivity in connection with the description of SQUID.
    [Show full text]
  • Cond-Mat.Mes-Hall] 28 Feb 2007 R Opligraost Eiv Htti Si Fact [7] Heeger in and Is Schrieffer Su, This Dimension, a That That One Showed Believe in to There So
    Anyons in a weakly interacting system C. Weeks, G. Rosenberg, B. Seradjeh and M. Franz Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 (Dated: June 30, 2018) In quantum theory, indistinguishable particles in three-dimensional space behave in only two distinct ways. Upon interchange, their wavefunction maps either to itself if they are bosons, or to minus itself if they are fermions. In two dimensions a more exotic possibility arises: upon iθ exchange of two particles called “anyons” the wave function acquires phase e =6 ±1. Such fractional exchange statistics are normally regarded as the hallmark of strong correlations. Here we describe a theoretical proposal for a system whose excitations are anyons with the exchange phase θ = π/4 and charge −e/2, but, remarkably, can be built by filling a set of single-particle states of essentially noninteracting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a 2D electron gas in the integer quantum Hall regime with unit filling fraction. The proposal rests on the observation that a vacancy in an otherwise periodic vortex lattice in the superconductor creates a bound state in the 2DEG with total charge −e/2. A composite of this fractionally charged hole and the missing flux due to the vacancy behaves as an anyon. The proposed setup allows for manipulation of these anyons and could prove useful in various schemes for fault-tolerant topological quantum computation. I. INTRODUCTION particle states. It has been pointed out very recently [9] that a two-dimensional version of the physics underly- Anyons and fractional charges appear in a variety of ing the above effect could be observable under certain theoretical models involving electron or spin degrees of conditions in graphene.
    [Show full text]
  • Lecture Notes 18: Magnetic Monopoles/Magnetic Charges
    UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 18 Prof. Steven Errede LECTURE NOTES 18 MAGNETIC MONOPOLES – FUNDAMENTAL / POINTLIKE MAGNETIC CHARGES No fundamental, point-like isolated separate North or South magnetic poles – i.e. N or S magnetic charges have ever been conclusively / reproducibly observed. In principle, there is no physical law, or theory, that forbids their existence. So we may well ask, why did “nature” not “choose” to have magnetic monopoles in our universe – or, if so, why are they so extremely rare, given that many people (including myself) have looked for / tried to detect their existence… If magnetic monopoles / fundamental point magnetic charges did exist in nature, they would obey a Coulomb-type force law (just as electric charges do): ⎛⎞μ ggtest src test ommˆ Frmmm()== gBr () ⎜⎟ 2 r ⎝⎠4π r Source point Sr′( ′) src src test Where: gm = magnetic charge of source particle gm r =−rr′ gm test gm = magnetic charge of test particle zˆ gm ≡+ g() ≡ North pole r′ r gm ≡− g() ≡ South pole SI units of magnetic charge g = Ampere-meters (A-m) ϑ yˆ xˆ Field / observation point Pr( ) 2 ⎛⎞μomg −7 Newtons N Units check: Fm () Newtons = ⎜⎟2 μπo =×410 22 ⎝⎠4π r Ampere( A ) 2 ⎛⎞NN()Am− ⎛⎞A2 − m2 Newton = N = ⎜⎟22= ⎜⎟ = N ⎝⎠Am ⎝⎠A2 m2 Newton Then (the radial) B -field of a magnetic monopole is: 1 Tesla ≡1 Ampere− meter ⎛⎞μ g src N N omˆ Brm ()= ⎜⎟2 r (SI units = Tesla = ) 1 T = 1 ⎝⎠4π r Am− Am− NN⎛⎞A2 − m N Units check: Tesla == = gm = Ampere-meters (A-m) ⎜⎟2 2 Am− ⎝⎠A m Am− © Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 1 2005-2008.
    [Show full text]
  • Transport in Quantum Hall Systems : Probing Anyons and Edge Physics
    Transport in Quantum Hall Systems : Probing Anyons and Edge Physics by Chenjie Wang B.Sc., University of Science and Technology of China, Hefei, China, 2007 M.Sc., Brown University, Providence, RI, 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Physics at Brown University PROVIDENCE, RHODE ISLAND May 2012 c Copyright 2012 by Chenjie Wang This dissertation by Chenjie Wang is accepted in its present form by Department of Physics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Prof. Dmitri E. Feldman, Advisor Recommended to the Graduate Council Date Prof. J. Bradley Marston, Reader Date Prof. Vesna F. Mitrovi´c, Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School iii Curriculum Vitae Personal Information Name: Chenjie Wang Date of Birth: Feb 02, 1984 Place of Birth: Haining, China Education Brown University, Providence, RI, 2007-2012 • - Ph.D. in physics, Department of Physics (May 2012) - M.Sc. in physics, Department of Physics (May 2010) University of Science and Technology of China, Hefei, China, 2003- • 2007 - B.Sc. in physics, Department of Modern Physics (July 2007) Publications 1. Chenjie Wang, Guang-Can Guo and Lixin He, Ferroelectricity driven by the iv noncentrosymmetric magnetic ordering in multiferroic TbMn2O5: a first-principles study, Phys. Rev. Lett. 99, 177202 (2007) 2. Chenjie Wang, Guang-Can Guo, and Lixin He, First-principles study of the lattice and electronic structures of TbMn2O5, Phys. Rev B 77, 134113 (2008) 3. Chenjie Wang and D. E. Feldman, Transport in line junctions of ν = 5/2 quantum Hall liquids, Phys.
    [Show full text]
  • P451/551 Lab: Superconducting Quantum Interference Devices
    P451/551 Lab: Superconducting Quantum Interference Devices (SQUIDs) AN INTRODUCTION TO SUPERCONDUCTIVITY AND SQUIDS Superconductivity was first discovered in 1911 in a sample of mercury metal whose resistance fell to zero at a temperature of four degrees above absolute zero. The phenomenon of superconductivity has been the subject of both scientific research and application development ever since. The ability to perform experiments at temperatures close to absolute zero was rare in the first half of this century and superconductivity research proceeded in relatively few laboratories. The first experiments only revealed the zero resistance property of superconductors, and more than twenty years passed before the ability of superconductors to expel magnetic flux (the Meissner Effect) was first observed. Magnetic flux quantization – the key to SQUID operation – was predicted theoretically only in 1950 and was finally observed in 1961. The Josephson effects were predicted and experimentally verified a few years after that. SQUIDs were first studied in the mid-1960’s, soon after the first Josephson junctions were made. Practical superconducting wire for use in moving machines and magnets also became available in the 1960's. For the next twenty years, the field of superconductivity slowly progressed toward practical applications and to a more profound understanding of the underlying phenomena. A great revolution in superconductivity came in 1986 when the era of high-temperature superconductivity began. The existence of superconductivity at liquid nitrogen temperatures has opened the door to applications that are simpler and more convenient than were ever possible before. The superconducting ground state is one in which electrons pair up with one another such that each resultant pair has the same net momentum (which is zero if no current is flowing).
    [Show full text]
  • Superconductors That Do Not Expel Magnetic Flux Y. Tanakaa*, H
    Superconductors that do not expel magnetic flux Y. Tanakaa*, H. Yamamoria, T. Yanagisawaa, T. Nishiob, and S. Arisawac aNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan bDepartment of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan cNational Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan *Corresponding author: Telephone and Fax No.: +81-298-61-5720 E-mail address: [email protected] Abstract An ultrathin superconducting bilayer creates a coreless fractional vortex when only the second layer has a hole. The quantization is broken by the hole, and the normal core disappears. The magnetic flux is no longer confined near the normal core, and its density profile around the hole becomes similar to that of a crème caramel; the divergence of the magnetic flux density is truncated around the center. We propose basic design of a practical device to realize a coreless fractional vortex. 1. Introduction In a superconductor, a vortex concentrates its self-energy around its center [1]. For example, the region within a 2-m-diameter circle holds more than 80% of self-energy, assuming a coherent length of 40 nm and a magnetic penetration depth of 80 nm for a 20-nm-thick niobium thin film [2-4]. This condition occurs because of quantization, in which the superconducting phase should rotate by 2 radians around the center, which provides a large amount of velocity to the superconducting pair near the center. If we can eliminate the singular point of the superconducting phase at the center (which corresponds to the normal core), we can expect a large reduction in the self-energy.
    [Show full text]
  • Arxiv:1908.01584V1 [Physics.Gen-Ph] 15 Jul 2019 ∗
    A NEW DUAL SYSTEM FOR THE FUNDAMENTAL UNITS including and going beyond the newly revised SI Pierre Fayet Laboratoire de physique de l’Ecole´ normale sup´erieure 24 rue Lhomond, 75231 Paris cedex 05, France ∗ and Centre de physique th´eorique, Ecole´ polytechnique, 91128 Palaiseau cedex, France Abstract We propose a new system for the fundamental units, which includes and goes beyond the present redefinition of the SI, by choosing also c = ~ = 1. By fixing c = c◦ m/s = 1, ~ = ~◦ Js = 1 2 and µ◦ = µ◦ N/A = 1, it allows us to define the metre, the joule, and the ampere as equal to 34 −1 −1 18 −1 (1/299 792 458) s, (1/~◦ = .948 ... 10 ) s and √µ◦ N = µ◦c◦/~◦ s = 1.890 ... 10 s . × × It presents at the same time the advantages and elegance of a system with ~ = c = µ◦ = ǫ◦ = p k = NA = 1 , where the vacuum magnetic permeability, electric permittivity, and impedance are all equal to 1. All units are rescaled from the natural ones and proportional to the s, s−1, s−2, ... or just 1, as for 18 the coulomb, ohm and weber, now dimensionless. The coulomb is equal to µ◦c◦/~◦ = 1.890... 10 , −19 × and the elementary charge to e = 1.602 ... 10 C= √4πα = .3028 ... The ohm is equal to 1/µ◦c◦ × p −1 so that the impedance of the vacuum is Z◦ = 376.730 ... Ω = 1 . The volt is 1/√µ◦c◦~◦ s = 15 −1 3 −2 32 −2 5.017 ... 10 s , and the tesla c◦V/m = c◦/µ◦~◦ s = 4.509 ..
    [Show full text]
  • 1 Fundamental Properties of Superconductors
    11 1 Fundamental Properties of Superconductors The vanishing of the electrical resistance, the observation of ideal diamagnetism, or the appearance of quantized magnetic flux lines represent characteristic prop- erties of superconductors that we will discuss in detail in this chapter. We will see that all of these properties can be understood, if we associate the superconducting state with a macroscopic coherent matter wave. In this chapter, we will also learn about experiments convincingly demonstrating this wave property. First we turn to the feature providing the name “superconductivity.” 1.1 The Vanishing of the Electrical Resistance The initial observation of the superconductivity of mercury raised a fundamen- tal question about the magnitude of the decrease in resistance on entering the superconducting state. Is it correct to talk about the vanishing of the electrical resistance? During the first investigations of superconductivity, a standard method for mea- suring electrical resistance was used. The electrical voltage across a sample car- rying an electric current was measured. Here, one could only determine that the resistance dropped by more than a factor of a thousand when the superconducting state was entered. One could only talk about the vanishing of the resistance in that the resistance fell below the sensitivity limit of the equipment and, hence, could no longer be detected. Here, we must realize that in principle it is impossible to prove experimentally that the resistance has exactly zero value. Instead, experimentally, we can only find an upper limit of the resistance of a superconductor. Of course, to understand such a phenomenon, it is highly important to test with the most sensitive methods to see whether a finite residual resistance can also be found in the superconducting state.
    [Show full text]
  • Mr. SQUID User's Guide
    Mr. SQUID® User's Guide Version 6.6 STAR Cryoelectronics, LLC 25 Bisbee Court, Suite A Santa Fe, NM 87508 U. S. A. ii ® Mr. SQUID User's Guide Manual written by Randy W. Simon, Michael J. Burns, Mark S. Colclough, Greg Zaharchuk, and Robin Cantor Advanced Experiments written by Michael J. Burns (Exp. 1-5) and Greg Zaharchuk (Exp. 6) Mr. SQUID® is a registered trademark of STAR Cryoelectronics, LLC Copyright © 1996 – 2012 STAR Cryoelectronics, LLC iii Mr. SQUID User’s Guide TABLE OF CONTENTS Technical Support .......................................................................................................................... vi Warranty ....................................................................................................................................... vii Safety Precautions ......................................................................................................................... vii 1 Introduction ..................................................................................................................... 1 2 The Mr. SQUID® System ............................................................................................... 5 2.1 System Components........................................................................................................ 5 2.2 Additional Equipment Required ..................................................................................... 5 3 Getting Started with Mr. SQUID® (New Users) ............................................................. 6 3.1 Setting
    [Show full text]
  • Superconductivity
    35162 Serway SAUNC 12 Superconductivity Chapter Outline 12.1 Magnetism in Matter 12.6 Electronic Specific Heat Magnetic Moments of Atoms 12.7 BCS Theory Magnetization and Magnetic Field Strength 12.8 Energy Gap Measurements Classification of Magnetic Substances Single-Particle Tunneling Ferromagnetism Absorption of Electromagnetic Paramagnetism Radiation Diamagnetism 12.9 Josephson Tunneling 12.2 A Brief History of The dc Josephson Effect Superconductivity The ac Josephson Effect Quantum Interference 12.3 Some Properties of Type I Superconductors 12.10 High-Temperature Critical Temperature and Critical Superconductivity Magnetic Field Mechanisms of High-Tc Magnetic Properties of Type I Superconductivity Superconductors 12.11 Applications of Penetration Depth Superconductivity (Optional) Magnetization Summary 12.4 Type II Superconductors ESSAY Superconducting Devices, by 12.5 Other Properties of Clark A. Hamilton Superconductors Persistent Currents Coherence Length FluxQuantization Most of the material covered in this chapter has to do with the phenomenon of superconductivity. As we shall see, magnetic fields play an important role in the field of superconductivity, so it is important to understand the magnetic properties of materials before discussing the properties of superconductors. All magnetic effects in matter can be explained on the basis of the current loops associated with atomic magnetic dipole moments. These atomic magnetic moments arise both from the orbital motion of the electrons and from an intrinsic property of the electrons known as spin. Our description of magnetism in matter is based in part on the experimental fact that the presence of bulk 1 short matter generally modifies the magnetic field produced by currents. For ex- standard 1 long 476 35162 Serway SAUNC 12.1 MAGNETISM IN MATTER 477 ample, when a material is placed inside a current-carrying solenoid, the mate- rial sets up its own magnetic field, which adds vectorially to the field that was already present.
    [Show full text]
  • Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding Travis P
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-26-2015 Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding Travis P. Abeita Follow this and additional works at: https://scholar.afit.edu/etd Recommended Citation Abeita, Travis P., "Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding" (2015). Theses and Dissertations. 19. https://scholar.afit.edu/etd/19 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH FREQUENCY DIRECTION FINDING THESIS Travis Abeita, Captain, USAF AFIT-ENG-MS-15-M-052 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-052 SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH FREQUENCY DIRECTION FINDING THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Travis Abeita, B.S.E.E.
    [Show full text]
  • Scanning Superconducting Quantum Interference Device Microscopy
    Master thesis Scanning Superconducting Quantum Interference Device Microscopy Sensitive mapping of magntic flux on thin films Tom Wijnands January 2013 Scanning Superconducting Quantum Interference Device Microscopy By Tom Wijnands To obtain the degree of Master of Science, Applied Physics January 10th, 2013 Abstract Thin films and interfaces can hold interesting phenomena. A scanning superconducting quantum interference device microscope (SSM) can map the magnetic flux of a surface. With a SSM a high magnetic resolution can be achieved. The SSM at the University of Twente has been made opera- tional again. Improving the fabrication processes and making the setup more robust. Three different materials have extensively been tested using this device. The first material is a LaAlO3/SrTiO3 interface which might have ferromagnetism and superconductivity in a single interface. This was not found in the tested samples. In the second material doped TiO2 a landscape of ferromagnetic dipoles were found. The third material a LaMnO3 (LMO) film. The LMO films are grown on STO and are ferromagnetic insulators. Measuring the LMO films with the SSM revealed ferromagnetic domains. Exam committee: Prof. Dr. Ir. H. Hilgenkamp Dr. M.H.G. Duits Dr. Ir. J. Flokstra P.D. Eerkes MSc Ing. D. Veldhuis Work preformed at: Interfaces and Correlated Electron systems group Faculty of Science and Technology University of Twente P.O. Box 217 7500 AE, Enschede Contents Contents 1 Introduction 1 2 Theory 3 2.1 Introduction to superconductivity . 3 2.2 Josphson junctions . 4 2.3 Flux quantization . 5 2.4 DCSQUID .......................................... 5 2.5 Fluxlockedloop ....................................... 6 2.6 DipoleModel......................................... 6 3 Experimental setup 9 3.1 Equipment .........................................
    [Show full text]