Work Stealing for Interactive Services to Meet Target Latency ∗ Jing Li∗ Kunal Agrawal∗ Sameh Elniketyy Yuxiong Hey I-Ting Angelina Lee∗ Chenyang Lu∗ Kathryn S. McKinleyy ∗Washington University in St. Louis yMicrosoft Research fli.jing, kunal, angelee,
[email protected], fsamehe, yuxhe,
[email protected] Abstract quent occurrence of high latency responses at one server is signif- Interactive web services increasingly drive critical business work- icantly amplified because services aggregate responses from large loads such as search, advertising, games, shopping, and finance. number of servers. Therefore, these servers are designed to mini- mize tail latency, i.e., the latency of requests in the high percentiles, Whereas optimizing parallel programs and distributed server sys- th tems have historically focused on average latency and throughput, such as 99 percentile latency (Dean and Barroso 2013; DeCandia the primary metric for interactive applications is instead consis- et al. 2007; Haque et al. 2015; He et al. 2012; Yi et al. 2008). This tent responsiveness, i.e., minimizing the number of requests that paper studies a closely related problem, optimizing for a target la- miss a target latency. This paper is the first to show how to gen- tency — given a target latency, the system minimizes the number eralize work-stealing, which is traditionally used to minimize the of requests whose latency exceeds this target. makespan of a single parallel job, to optimize for a target latency in We explore interactive services on a multicore server with mul- interactive services with multiple parallel requests. tiple parallelizable requests. Interactive service workloads tend We design a new adaptive work stealing policy, called tail- to be computationally intensive with highly variable work de- control, that reduces the number of requests that miss a target mand (Dean and Barroso 2013; He et al.