Comparison of Selective Transmitters for Solar Thermal Applications ROBERT A. TAYLOR,1,2,* YASITHA HEWAKURUPPU,1 DREW DEJARNETTE,3 TODD P. OTANICAR3 1School of Mechanical and Manufacturing Engineering—The University of New South Wales, Gate 14, Barker St., Sydney, Australia, 2052 2School of Photovoltaics and Renewable Energy Engineering—The University of New South Wales, Gate 14, Barker St., Sydney, Australia, 2052 3Department of Mechanical Engineering, The University of Tulsa, 800 S. Tucker Dr., Tulsa, USA, 74104 *Corresponding author:
[email protected] Received 10 March 2016; revised 13 April, 2016; accepted XX Month XXXX; posted X Month XXXX; published XX Month XXXX OCIS codes: (310.6860) Thin films, optical properties, (310.7005) Transparent conductive coatings, (350.6050) Solar Energy. ABSTRACT 1. INTRODUCTION Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short- An ideal selective solar component perfectly absorbs (or wavelength solar radiation and, importantly, by their emission of transmits) short wavelength radiation - e.g. for wavelengths long-wavelength thermal radiation. In conventional collector cut-off – while perfectly reflecting long designs, the receiver is coated with a selectively absorbing wavelength radiation – e.g. for wavelengths cut-off. This cut- surface (Black Chrome, TiNOx, etc.) which serves both of these betweenoff wavelength 0 and depends λ on operating temperature and the solar aims. As the leading commercial absorber, TiNOx consists of concentration ratio. ‘Selectivity’ is made possible> λ by the fact several thin, vapor deposited layers (of metals and ceramics) on a that terrestrial solar energy does not have a true blackbody metal substrate.