Natural Killer T Cell ^ Based Cancer Immunotherapy 55 Commentaryonmotohashietal.,P.6079 Hansj.J

Total Page:16

File Type:pdf, Size:1020Kb

Natural Killer T Cell ^ Based Cancer Immunotherapy 55 Commentaryonmotohashietal.,P.6079 Hansj.J The Biology Behind Natural Killer T Cell ^ Based Cancer Immunotherapy 55 CommentaryonMotohashietal.,p.6079 HansJ.J. van der Vliet,1, 2 Steven P. Balk,1and Mark A. Exley1 In this issue of Clinical Cancer Research, Motohashi et al. (1) lymphoma, sarcoma, melanoma, and lung carcinoma, suggest- present data on the first clinical trial using adoptive transfer ing broad clinical applicability(reviewed in ref. 6). On pre- of invariant natural killer T (iNKT) cells in patients with sentation of a-GalCer byCD1d-expressing antigen-presenting advanced or recurrent non–small cell lung cancer. This study cells, iNKT are activated and rapidlyproduce large amounts of follows up on several other recentlydone clinical trials targeting predominantlyIFN- g but also IL-4 that cumulativelyresult in iNKT that all aim to induce the same robust antitumor effects the activation of NK cells, B cells, CD4+ and CD8+ T cells, in humans as previouslyobserved in murine tumor models. and the antigen-presenting cells with which theyinteract. iNKT constitute an evolutionary conserved T lymphocyte Through the production of IFN-g, as well as through direct lineage that displays an extremely restricted T-cell antigen CD1d signaling (7), iNKT enhance dendritic cell maturation receptor repertoire with limited junctional diversity(V a24-Ja18 and IL-12 production. It is this cascade of events that is even- in human and Va14-Ja18 in mouse). iNKT can recognize tuallybelieved to result in the development of a Th1-biased certain glycolipid antigens, which may include the endogenous proinflammatoryantitumor immune response that is pivotal isoglobotrihexosylceramide and the synthetic a-galactosylcer- for the antimetastatic activityof a-GalCer bypromoting the amide (a-GalCer), in the context of the monomorphic generation of a long-lasting antitumor effector cell population nonclassic MHC class I–like antigen-presenting molecule and byinhibiting tumor angiogenesis (8, 9). CD1d. One of the features that distinguish iNKT from CD1d is constitutivelyexpressed bydendritic cells and other conventional T cells is their capacityto rapidlyand in some antigen-presenting cells at low levels bycertain other tissues cases simultaneouslyproduce large amounts of both T helper and can be up-regulated in response to stress (2, 8). The (Th) 1 proinflammatory(promoting cellular immune possible contribution of tumor cell CD1d expression remains responses) and Th2-type anti-inflammatory (promoting certain unclear. iNKT can mediate antitumor immunitythrough the antibodyresponses) cytokinesupon triggering, therebymedi- activation of other immune cells, in which case tumor ating the regulation of a varietyof immune responses, regression would be independent of tumor cell CD1d including antitumor immune responses (2). expression. Direct lysis of CD1d-expressing tumor cells has iNKT playa physiologicrole in tumor immunosurveillance been reported (10), however, although some tumors might against carcinogen-induced tumors (3) and are required for escape direct lysis by iNKT through shedding of neutral the antitumor effects of low-dose interleukin (IL)-12 treat- glycolipids (11) and/or their absence of costimulatory signals ment (4) through their capacityfor Th1 cytokineproduction that could lead to altered iNKT activation and consequent (Fig. 1). Manystudies designed to evaluate the antitumor suppression of antitumor responses (2, 8). activities of iNKT have used the model and highlyspecific Clinical evaluation of the antitumor activityof iNKT began glycolipid antigen a-GalCer (KRN7000) that was originally when i.v. administration of a-GalCer was evaluated in a phase isolated from the marine sponge Agelas mauritianus in a screen 1 clinical trial in patients with solid tumors. Although no for novel antitumor agents bythe KIRIN pharmaceutical clinical responses were observed, this studyshowed that a- company(Gunma, Japan; ref. 5). Antitumor effects of a-GalCer GalCer was well tolerated and indicated the importance of a were observed in a varietyof tumor metastasis models of liver, sizeable pool of iNKT in patients treated with a-GalCer, as signs lung, and lymph nodes, including colon carcinoma, T-cell of immune activation onlyoccurred in the smaller subset of patients with relativelynormal iNKT numbers (12). Simultaneously, studies showed quantitative and qualitative defects in the iNKT pool in various types of cancer, including colon cancer, lung cancer, breast cancer, melanoma, head and 1 Authors’ Affiliations: Cancer Biology Program, Division of Hematology and neck squamous cell carcinoma, prostate cancer, myelodys- Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts and 2Department of Internal Medicine, Vrije Universiteit plastic syndromes, and progressive malignant melanoma, Medisch Centrum, Amsterdam, the Netherlands although not in glioma (reviewed in ref. 6). Murine experi- Received 6/8/06; accepted 6/13/06. ments indicated that the antitumor activityof a-GalCer could Grant support: Netherlands Organization for Scientific Research TALENT grant be enhanced when a-GalCer was loaded onto dendritic cells and grant 920-03-142, Dutch Cancer Society academic grant, NIH grants R01 (13–15), this has thus far been evaluated in three clinical DK066917 and R01AI42955, Harvard Center for Human Cell Therapy pilot grant, Hershey Family Prostate Cancer Research Fund, and Dana-Farber/Harvard Cancer studies. Indeed, therapywith a-GalCer-pulsed dendritic cells Center Skin Cancer Specialized Program of Research Excellence grant P50 seemed more potent and induced inflammatorytumor CA93683. responses, tumor necrosis, and decreases in tumor markers in Requests for reprints: Mark A. Exley, Beth Israel Deaconess Medical Center, several patients as well as expansion of iNKT over several weeks NRB 1030L, 330 Brookline Avenue, Boston, MA 02115. Phone: 617-667-0982; E-mail: [email protected]. to a few months and an increase in adaptive T-cell immunity F 2006 American Association for Cancer Research. (16–18). Again, immunologic responses were most prominent doi:10.1158/1078-0432.CCR-06-1392 in patients with relativelyhigh numbers of circulating iNKT www.aacrjournals.org 5921 Clin Cancer Res 2006;12(20) October 15, 2006 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2006 American Association for Cancer Research. The Biology Behind Fig.1. Simplified model for recognition modes by iNKT.To the left, normal antigen-presenting DC enhanceTh1 antitumor responses through a MHC class 2-like interaction also involving co-stimulation (red hatched to left) and DC Th1cytokines such as IL-12 (red hatched to right).Tothe right, presentation by tumor cells lacking co-stimulation and secreting suppressive cytokines such asTGF-h (blue hatched to right) results in iNKT activation toward Th2 response (IL-4, IL-13) and consequent suppression of antitumor imunity. An intermediate effect might be expected if immature DC or defective intratumoral DC were the predominant presenting cells. Other variables include potential glycolipid antigens from the tumor presented directly by the tumor and/or indirectly via DC to the iNKT, the predominance of certain iNKTsubsets, and the presence of other immunoregulatory cells. (17) and in vivo iNKT responses were strongest using mature ena, which is a concern when transferring cells that seem to dendritic cells (18). regulate self-tolerance. Motohashi et al. selected patients for The quantitative defects in iNKT numbers that are observed inclusion in their studywith relativelyhigh amounts of in manycancer patients are accompanied byqualitative circulating iNKT. Although this is reasonable for toxicity defects in the residual iNKT population, including defective analysis, one might expect that patients with more deficient IFN-g production (19), which therebyhamper antitumor iNKT populations would benefit most from administration of effects of the iNKT ligand a-GalCer. Using this line of iNKT and that this patient group should not be excluded in thinking, beneficial clinical results maybe expected from future trials, which ideallywould also be of larger scale immunotherapeutic strategies directed at expansion and allowing evaluation of clinical responses. activation of Th1-polarized iNKT in cancer patients. This is Clearly, the article of Motohashi et al. sets the stage for further supported bymodels in which the antitumor activity further studies that will focus on optimization of this of adoptivelytransferred iNKT was shown in murine lung interesting type of immunotherapy. We believe that apart from cancer and melanoma (14, 15) and byaccumulating evidence attempts to use more purified populations of iNKT, future in man indicating that numerical defects in the size of the studies should additionallyfocus on a comparison of the effects iNKT pool are indeed of clinical significance, as theyare of different iNKT subsets, as these have been shown to be associated with poor prognosis in patients with neuroblasto- functionallydistinct. CD4 + iNKT produce both Th1- and À À ma and colon cancer (20, 21). Th2-type cytokines, whereas CD4 CD8 double-negative In this issue of Clinical Cancer Research, Motohashi et al. iNKT, and especiallythe rarest subset, CD8 + iNKT, produce describe the results of a clinical phase 1 studyin which six Th1-type cytokines (22–24). As antitumor immune responses patients with advanced or recurrent non–small cell lung cancer have traditionallybeen reported to benefit most from Th1-type received autologous in vitro –expanded
Recommended publications
  • The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8+ T Cell Generation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector MINI REVIEW published: 28 July 2015 doi: 10.3389/fimmu.2015.00379 The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8+ T cell generation Catherine Gottschalk, Elisabeth Mettke and Christian Kurts* Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany New vaccination strategies focus on achieving CD8+ T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Edited by: Elisabetta Padovan, Th cell help and license DC as well. iNKT cells produce a broad spectrum of Th1 and Basel University Hospital and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in University of Basel, Switzerland DC. This form of licensing differs from Th cell help by inducing other chemokines, while Reviewed by: Th cell-licensed DCs produce CCR5 ligands, iNKT cell-licensed DCs produce CCL17, Francesca Di Rosa, + + National Research Council, Italy which attracts CCR4 CD8 T cells for subsequent activation. It has recently been shown Alena Donda, that iNKT cells do not only enhance immune responses against bacterial pathogens or University of Lausanne, Switzerland Paolo Dellabona, parasites but also play a role in viral infections.
    [Show full text]
  • Natural Killer T Cells Are Required for the Development of a Superantigen-Driven T Helper Type 2 Immune Response in Mice
    IMMUNOLOGY ORIGINAL ARTICLE Natural killer T cells are required for the development of a superantigen-driven T helper type 2 immune response in mice Auro Nomizo,1 Edilberto Postol,2 Summary Raquel de Alencar,2 Fabı´ola We show, here, that one single injection or weekly injections of staphylo- Cardillo2 and Jose´ Mengel2 coccal enterotoxin B (SEB), starting in 1-day-old newborn mice, induced 1Department of Clinical Analysis, Toxicology a powerful immune response with a T helper type 2 (Th2) pattern, as and Bromatology, Faculty of Pharmaceutical Sciences of Ribeira˜o Preto, University of Sa˜o judged by the isotype and cytokine profile, with the production of large Paulo, Ribeira˜o Preto, and 2Department of amounts of SEB-specific immunoglobulin G1 (IgG1), detectable levels of Immunology, Institute of Biomedical Sciences, SEB-specific IgE and increased production of interleukin-4 by spleen cells. University of Sa˜o Paulo, Sa˜o Paulo, SP, Brazil These protocols also induced an increase in the levels of total IgE in the serum. Memory of SEB was transferred to secondary recipients by using total spleen cells from primed animals. The secondary humoral response in transferred mice was diminished if spleen cells from SEB-treated mice were previously depleted of CD3+ or Vb8+ T cells or NK1.1+ cells. In vivo depletion of NK1.1+ cells in adult mice resulted in a marked reduction in the SEB-specific antibody response in both the primary and secondary doi:10.1111/j.1365-2567.2005.02215.x immune responses. Additionally, purified NK1.1+ T cells were able to per- Received 11 April 2005; revised 23 May 2005; form SEB-specific helper B-cell actions in vitro and in vivo.
    [Show full text]
  • Preclinical Evaluation of Invariant Natural Killer T Cells Modified With
    International Journal of Molecular Sciences Article Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma Renée Poels 1,†, Esther Drent 1,†,‡, Roeland Lameris 2, Afroditi Katsarou 1, Maria Themeli 1, Hans J. van der Vliet 2,3, Tanja D. de Gruijl 2, Niels W. C. J. van de Donk 1 and Tuna Mutis 1,* 1 Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (R.P.); [email protected] (E.D.); [email protected] (A.K.); [email protected] (M.T.); [email protected] (N.W.C.J.v.d.D.) 2 Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (R.L.); [email protected] (H.J.v.d.V.); [email protected] (T.D.d.G.) 3 Lava Therapeutics, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected] † Equally contributed. ‡ Presently working at Gadeta, 3584 CM Utrecht, The Netherlands. Abstract: Due to the CD1d restricted recognition of altered glycolipids, Vα24-invariant natural killer T (iNKT) cells are excellent tools for cancer immunotherapy with a significantly reduced risk Citation: Poels, R.; Drent, E.; for graft-versus-host disease when applied as off-the shelf-therapeutics across Human Leukocyte Lameris, R.; Katsarou, A.; Themeli, Antigen (HLA) barriers. To maximally harness their therapeutic potential for multiple myeloma M.; van der Vliet, H.J.; de Gruijl, T.D.; (MM) treatment, we here armed iNKT cells with chimeric antigen receptors (CAR) directed against van de Donk, N.W.C.J.; Mutis, T.
    [Show full text]
  • Invariant Natural Killer T Cells
    Antibodies 2014, 3, 16-36; doi:10.3390/antib3010016 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Invariant Natural Killer T Cells Antonella Cianferoni Divisions of Allergy and Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail: [email protected]; Tel.: +1-267-426-7831; Fax: +1-215-590-4529 Received: 8 November 2013; in revised form: 13 December 2013 / Accepted: 18 December 2013 / Published: 23 December 2013 Abstract: Invariant Natural killer T cell (iNKT cells) are a subset of T cells, which are narrowly defined as a T cell lineage expressing a semi-invariant CD1d-restricted T cell Receptors (TCRs) composed by Vα24-Jα18/Vβ11 in human, and Vα14-Jα18/Vβ8,Vβ7, and Vβ2 in mouse. Unlike conventional T cells which recognize peptides bound to highly polymorphic major histocompatibility complex (MHC) class I and II molecules, iNKT cells recognize lipid antigens, such as glycolipids, presented by CD1d, a non-polymorphic non-classical MHC class I molecule. Lipids derived from microbes, tumors, and allergens, as well as self lipids have been shown to be able to activate iNKT cells. Early on, in an immune response, ligation of the iNKT cell TCR leads to rapid and copious secretion of prototypical Th1 and Th2 cytokines. Moreover, like NK cells, iNKT cells express cytotoxic granules, such as perforin and granzyme that polarize upon activation of TCR and are able to kill target cells. Therefore iNKT cells are a very interesting subset of T cells that may bridge the innate and adaptive immune systems.
    [Show full text]
  • Updating Targets for Natural Killer/T-Cell Lymphoma Immunotherapy
    Cancer Biol Med 2021. doi: 10.20892/j.issn.2095-3941.2020.0400 REVIEW Updating targets for natural killer/T-cell lymphoma immunotherapy Weili Xue, Mingzhi Zhang Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan, Zhengzhou 450052, China ABSTRACT Natural killer/T-cell lymphoma (NKTCL) is a highly invasive subtype of non-Hodgkin lymphoma, typically positive for cytoplasmic CD3, CD56, cytotoxic markers, including granzyme B and TIA1, and Epstein-Barr virus (EBV). The current treatment methods for NKTCL are associated with several drawbacks. For example, chemotherapy can lead to drug resistance, while treatment with radiotherapy alone is inadequate and results in frequent relapses. Moreover, hematopoietic stem cell transplantation exhibits limited efficacy and is not well recognized by domestic and foreign experts. In recent years, immunotherapy has shown good clinical results and has become a hot spot in cancer research. Clinical activity of targeted antibodies, such as daratumumab (anti-CD38 antibody) and brentuximab vedotin (anti-CD30 antibody), have been reported in NKTCL. Additionally, dacetuzumab and Campath-1H have demonstrated promising results. Further encouraging data have been obtained using checkpoint inhibitors. The success of these immunotherapy agents is attributed to high expression levels of programmed death-ligand 1 in NKTCL. Furthermore, anti-CCR4 monoclonal antibodies (mAbs) exert cytotoxic actions on both CCR4+ tumor cells and regulatory T cells. Depletion of these cells and the long half-life of anti-CCR4 mAbs result in enhanced induction of antitumor effector T cells. The role of IL10 in NKTCL has also been investigated. It has been proposed that exploitation of this cytokine might provide potential novel therapeutic strategies.
    [Show full text]
  • NKT Cells in Mucosal Immunity
    nature publishing group REVIEW See COMMENTARY page XX NKT cells in mucosal immunity S M i d d e n d o r p 1 a n d E E S N i e u w e n h u i s 1 The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and / or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell- based interventions and immune therapies for human intestinal diseases. INTRODUCTION With reference to recent literature on the role of iNKT cells in The main function of the intestine is digestion and absorption mucosal immunology,2 – 4 this review will mainly focus on the of nutrients from food and recovery of water and electrolytes. role of other intestinal NKT cells (e.g., mucosal (m) NKT cells In addition, the intestine houses a large immune compartment, and NKT cells) in mucosal immunity and the interaction of as it is responsible for prevention and control of mucosal infec- NKT cells with other immune cells such as dendritic cells (DCs) tions, regulation of microbial colonization, and induction of oral and B lymphocytes.
    [Show full text]
  • Targeting Natural Killer Cells and Natural Killer T Cells in Cancer
    FOCUS ON TuMouR IMMunoLoGY & IMMunoTHERAPY REVIEWS Targeting natural killer cells and natural killer T cells in cancer Eric Vivier1,2,3,4, Sophie Ugolini1,2,3,5, Didier Blaise5,6,7, Christian Chabannon5,6,7 and Laurent Brossay8 Abstract | Natural killer (NK) cells and natural killer T (NKT) cells are subsets of lymphocytes that share some phenotypical and functional similarities. Both cell types can rapidly respond to the presence of tumour cells and participate in antitumour immune responses. This has prompted interest in the development of innovative cancer therapies that are based on the manipulation of NK and NKT cells. Recent studies have highlighted how the immune reactivity of NK and NKT cells is shaped by the environment in which they develop. The rational use of these cells in cancer immunotherapies awaits a better understanding of their effector functions, migratory patterns and survival properties in humans. The immune system is classically divided into innate and the antitumour effect of NK cells has been documented adaptive branches. The adaptive immune system can be in many models and instances. In vitro, mouse and defined by the presence of cells (B cells and T cells in human NK cells can kill a broad range of tumour cells of higher vertebrates) that can respond to many diverse haematopoietic and non-haematopoietic origin. In vivo, environmental antigens. This is achieved through the mouse NK cells can eliminate many transplantable and clonal expression of a colossal repertoire of B cell recep- spontaneous tumours9,10. Selective NK cell deficiencies 1 Centre d’Immunologie de 11 Marseille-Luminy, Université tors (BCRs) and T cell receptors (TCRs) with distinct are extremely rare , thus preventing the monitoring d’Aix-Marseille, Campus de antigen specificities, the diversity of which results from of cancer incidence in these patients, but also possibly Luminy Case 906, 13288 somatic DNA rearrangements.
    [Show full text]
  • Restoring Natural Killer Cell Immunity Against Multiple Myeloma in the Era of New Drugs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Restoring Natural Killer Cell immunity against Multiple Myeloma in the era of New Drugs Gianfranco Pittari1, Luca Vago2,3, Moreno Festuccia4,5, Chiara Bonini6,7, Deena Mudawi1, Luisa Giaccone4,5 and Benedetto Bruno4,5* 1 Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar, 2 Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy, 3 Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy, 4 Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy, 5 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy, 6 Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy, 7 Vita-Salute San Raffaele University, Milano, Italy Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a pro- gressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug devel- opment and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression.
    [Show full text]
  • Cellular Immunology Natural Killer T Cells and Ulcerative Colitis
    Cellular Immunology 335 (2019) 1–5 Contents lists available at ScienceDirect Cellular Immunology journal homepage: www.elsevier.com/locate/ycimm Natural killer T cells and ulcerative colitis T ⁎ ⁎ Lai Li Jie, Shen Jun , Ran Zhi Hua State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China ARTICLE INFO ABSTRACT Keywords: Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD). Both innate immunity Pathogenesis and adaptive immunity are aberrant in IBD. The pathogenesis of UC includes abnormal inflammation and im- Cytokines mune responses of the digestive tract. Natural killer T (NKT) cells participate in the innate and adaptive immune Therapeutics responses, together with a vast array of cytokines. Recent studies suggested that IL-13, IL5 and IL-4 are involved Natural killer T cells in the occurrence and the development of UC. Manipulating NKT cells may be a potential strategy to reconstruct Ulcerative colitis the abnormal immune responses in UC. In this review, we explore the roles of NKT cells and cytokines in UC. Additionally, neutralizing antibodies and inhibitors of cytokines produced by NKT cells or their receptors are also discussed as novel therapeutic choices for UC. 1. Introduction secreted cytokines. For example, IL-13 and IL-4 can induce airway hypersensitivity, as well as the disruption of epithelial cell tight junc- Inflammatory bowel disease (IBD), including Crohn’s disease (CD) tions [10].
    [Show full text]
  • Cytokine Expression by Invariant Natural Killer T Cells Is Tightly Regulated Throughout Development and Settings of Type-2 Inflammation
    nature publishing group ARTICLES OPEN Cytokine expression by invariant natural killer T cells is tightly regulated throughout development and settings of type-2 inflammation TF O’Brien1, K Bao1, M Dell’Aringa1, WXG Ang2, S Abraham2 and RL Reinhardt1 Invariant natural killer T (iNKT) cells produce cytokines interleukin-4 (IL-4) and IL-13 during type-2 inflammatory responses. However, the nature in which iNKTcells acquire type-2 cytokine competency and the precise contribution of iNKT cell–derived IL-4 and IL-13 in vivo remains unclear. Using IL-13-reporter mice to fate-map cytokine–expressing cells in vivo, this study reveals that thymic iNKTcells express IL-13 early during development, and this IL-13-expressing intermediate gives rise to mature iNKT1, iNKT2, and iNKT17 subsets. IL-4 and IL-13 reporter mice also reveal that effector iNKT2 cells produce IL-4 but little IL-13 in settings of type-2 inflammation. The preferential production of IL-4 over IL-13 in iNKT2 cells results in part from their reduced GATA-3 expression. In summary, this work helps integrate current models of iNKT cell development, and further establishes non-coordinate production of IL-4 and IL-13 as the predominant pattern of type-2 cytokine expression among innate cells in vivo. INTRODUCTION in settings of allergic inflammation. iNKT cells reside in various Pathology associated with allergic disease is a result of type-2 organs including lymph nodes, spleen, liver, bone marrow, and inflammation and represents a significant global health these cells appear to play particularly
    [Show full text]
  • The Requirement of Natural Killer T-Cells in Tolerogenic Apcs-Mediated Suppression of Collagen-Induced Arthritis
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 42, No. 8, 547-554, August 2010 The requirement of natural killer T-cells in tolerogenic APCs-mediated suppression of collagen-induced arthritis Sundo Jung1, Yoon-Kyung Park1, pression of CIA. Jung Hoon Shin1, Hyunji Lee1, Soo-Young Kim2, Gap Ryol Lee3 and Se-Ho Park1,4 Keywords: antigen-presenting cells; antigens; arthri- tis; CD1d; experimental; immune tolerance; natural 1School of Life Sciences and Biotechnology killer T-cells Korea University Seoul 136-701, Korea 2Department of Anatomy Introduction Division of Brain Korea 21, Biomedical Science Antigen presenting cells (APCs) can be either Korea University College of Medicine immunogenic or tolerogenic depending on their Seoul 136-705, Korea 3 stage of maturation and their level of activation. Department of Life Science APCs function can also be modified by treatment Sogang University with cytokines such as TGF-β2 and IL-10. TGF-β2 Seoul 121-742, Korea is a major immunosuppressive cytokine that is 4 Corresponding author: Tel, 82-2-3290-3160; present in the aqueous humor of the anterior Fax, 82-2-927-9028; E-mail, [email protected] chamber (a.c.) of the eye; it is also known to DOI 10.3858/emm.2010.42.8.055 modulate the function of thioglycolate-induced peritoneal exudate cells (PECs) in vitro (Wilbanks Accepted 1 July 2010 and Streilein, 1992; Steinbrink et al., 1997). Since Available Online 7 July 2010 APCs interact directly with antigen-specific T cells, APCs that induce specific tolerance could be a Abbreviations: ACAID, anterior chamber-associated immune devia- very effective and specific means of targeting tion; CIA, collagen induced arthritis; PEC, peritoneal exudate cells; autoreactive T cells.
    [Show full text]
  • Role of Type 1 Natural Killer T Cells in Pulmonary Immunity
    REVIEW nature publishing group Role of type 1 natural killer T cells in pulmonary immunity C Paget1,2,3,4,5,6,7 and F Trottein3,4,5,6,7 Mucosal sites are populated by a multitude of innate lymphoid cells and ‘‘innate-like’’ T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKTcell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKTcells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed. INTRODUCTION Definition, development, and homeostasis Mucosae are continuously exposed to self and environ- NKT cells represent a population of innate/memory uncon- mental triggers and serve as a first line of defense against ventional T lymphocytes that co-express markers typically various pathogens and insults. Establishment of immune found on NK cells and conventional T lymphocytes. Unlike responses at these sites needs to be tightly regulated in order to conventional T lymphocytes, which recognize peptide Ags, contain and/or eliminate pathogens, to generate effective NKT cells recognize a broad range of endogenous and memory against them, and to prevent the development of exogenous lipid Ags presented by the monomorphic major uncontrolled inflammation and/or autoimmune diseases.
    [Show full text]