78 T-CELL, MHC I, and TUMOR INTRINSIC GENE SIGNATURES PREDICT CLINICAL BENEFIT and Sorafenib Treatment

Total Page:16

File Type:pdf, Size:1020Kb

78 T-CELL, MHC I, and TUMOR INTRINSIC GENE SIGNATURES PREDICT CLINICAL BENEFIT and Sorafenib Treatment Abstracts J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0078 on 10 December 2020. Downloaded from resistance to single-agent PD-1 inhibitors and is suggestive of potential treatment strategies. Validation is warranted in future clinical trials (NCT03412773). Acknowledgements This study was sponsored by BeiGene, Ltd. Writing and editorial assistance was provided by Regina Swit- zer, PhD, and Elizabeth Hermans, PhD (OPEN Health Medi- cal Communications, Chicago. IL), and funded by the study sponsor. Trial Registration NCT02407990, NCT04068519 http://dx.doi.org/10.1136/jitc-2020-SITC2020.0077 Abstract 77 Figure 1 Median difference in gene signatures before and after sorafenib exposure 78 T-CELL, MHC I, AND TUMOR INTRINSIC GENE SIGNATURES PREDICT CLINICAL BENEFIT AND sorafenib treatment. Tislelizumab, an anti-PD-1 monoclonal RESISTANCE TO TISLELIZUMAB MONOTHERAPY IN antibody, has demonstrated single-agent antitumor activity in PRETREATED PD-L1+ UROTHELIAL CARCINOMA patients with advanced, previously treated HCC in two early 1Dingwei Ye*, 2Aiping Zhou, 3Qing Zou, 4Hanzhong Li, 5Cheng Fu, 6Hailong Hu, phase studies (NCT02407990, NCT04068519). Association of 7Jian Huang, 8Wei Shen, 8Yun Zhang, 8Xiaopeng Ma, 8Pei Zhang, 8Ruiqi Huang, biomarkers, including PD-L1 expression and gene expression 8Xiusong Qiu, 8Lilin Zhang, 9Feng Bi. 1Fudan University Shanghai Cancer Center, Shanghai, profiles (GEP), with response and resistance to tislelizumab China; 2Chinese Academy of Medical Sciences, Beijing, China; 3Jiangsu Cancer Hospital, were explored. Nanjing, China; 4Peking Union Medical College Hospital, Beijing, China; 5Liaoning Cancer Methods PD-L1 expression was evaluated on tumor cells (TC) Hospital and Institute, Shenyang, China; 6Second Hospital Tianjin Medical University, Tianjin, 7 8 using the VENTANA PD-L1 (SP263) assay in baseline tumor China; Sun Yat-sen University, Guangzhou, China; BeiGene (Beijing) Co., Ltd., Beijing, 9 samples collected before or after sorafenib treatment. GEP China; West China Hospital, Sichuan University, Changdu, China were assessed using the 1392-gene HTG GEP EdgeSeq panel. Background Tislelizumab, an anti-PD-1 monoclonal antibody, Signature scores were calculated using the Gene Set Variation demonstrated efficacy as monotherapy in patients with previ- Analysis package with publicly available gene signatures (GS). ously treated PD-L1+ urothelial carcinoma (UC) during a Wilcoxon rank-sum test was used to analyze differential gene phase 2 study (NCT04004221). Here, gene expression profiles signatures (DEG); GS association with PFS and OS was eval- copyright. correlating with response and resistance to tislelizumab treat- uated using Cox proportional hazards models. ment are reported. Results Single-agent tislelizumab demonstrated antitumor activ- Methods Gene expression profiling (GEP) was conducted on ity in advanced, previously treated HCC (ORR=13%; CB [PR baseline tumor samples from 100 Chinese patients with UC +SD >6 months]=31%, median PFS=3.3 months; median enrolled in the phase 2 tislelizumab study using a 1,392-gene OS=13.3 months). PD-L1+ (TC1%) prevalence and GEP panel by HTG EdgeSeq. Gene Signature (GS) scores were cal- showed different patterns in samples collected before and after culated using the Gene Set Variation Analysis package. Differ- sorafenib exposure (figure 1). While non-exposed samples ential gene expression (DEG) analysis was performed between (n=16) were enriched for immune suppressive signatures, sor- responders and non-responders using the Wilcoxon test; sur- afenib-exposed samples (n=41) showed higher PD-L1+ preva- vival was evaluated using the Cox proportional hazards model lence (53.7% vs 25%; P=0.08) and immune-cell activation and the odds of tumor response for subgroup analysis was signatures along with co-inhibition molecules. In sorafenib- http://jitc.bmj.com/ estimated by logistic regression. exposed samples, PD-L1 expression was positively correlated Results Of patients with available confirmed response results with CB (P=0.0027) and a trend of longer PFS (HR=0.56, À (n=85), DEG analysis found that responders had significantly 95% CI:0.28–1.13). ORR was higher in PD-L1+ than PD-L1 higher T-cell GS (CD3D, CD3E, CD3G, CD6, SH2D1A, sorafenib-exposed samples (23.8% vs 0%; P=0.049). DEG TRAT1) (P=0.04) and MHC I GS (HLA-A, TAP1) (P=0.05), analysis in sorafenib-exposed samples demonstrated that NK- respectively. Using median GS scores as a cutoff, improvement mediated cytotoxicity GS was positively correlated with CB – in overall survival (OS) was observed in T-cell high versus T- on September 30, 2021 by guest. Protected (P=0.03), as well as a trend of longer PFS (HR=0.43, 95% cell–low groups (P=0.01) and a trend of longer OS was seen CI:0.17–1.06). Across the different analyses, no correlation between MHC I–high versus MHC I–low groups. Patients in with OS was observed. Patients considered non-responders T-cell and MHC I–double-high subgroups showed further (NRs) were found clustered into three distinct GEP subgroups (NR1, NR2, NR3). Compared with responders, NR1 had enhanced angiogenesis signatures (P=0.01), including TEK, Abstract 78 Table 1 T-cell and MHC I gene signatures associated KDR, HGF, and EGR1. Despite high inflamed tumor signa- with clinical efficacy of tislelizumab in patients with UC tures, NR2 had increased expression of T-cell inhibition GS scores (P=0.01), including CD274, CTLA4, TIGIT, and CD96. The NR3 subgroup showed higher cell-cycle GS scores compared with responders (P=0.05), including E2F7, FOXA1, and FANCD2. Conclusions Prior sorafenib exposure appears to be associated with increased PD-L1 expression and tumor microenviron- ment-related GS, as well as response and PFS from tislelizu- mab in advanced HCC patients. Elevated angiogenesis, immune exhaustion, and cell-cycle GS levels may indicate A48 J Immunother Cancer 2020;8(Suppl 3):A1–A559 Abstracts J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0078 on 10 December 2020. Downloaded from improvement in clinical efficacy (40% objective response rate Abstract 79 Table 1 Tumor-immune signatures associated with [ORR], 5.26 month median progression-free survival [PFS], clinical efficacy of tislelizumab in patients with ESCC and 15.2 month median OS) than other subgroups (table 1). In addition to immune-related genes in the microenvironment, DEG analysis also revealed that tumor-related genes were highly expressed in non-responders, such as intrinsic genes related to angiogenesis (VEGFA [P=0.07], KDR [P=0.07]), the mTOR pathway (MTOR [P=0.015]), and DNA damage repair (REV3L [P=0.007]). MTOR and REV3L were associ- ated with shorter PFS (P=0.02; P=0.003) and OS (P=0.03; P =0.008), respectively. Conclusions By using GEP, T-cell and MHC I GS were identi- fied as potentially predictive biomarkers of response to tisleli- zumab monotherapy in PD-L1+ UC in this retrospective analysis. By combining these two GS scores, patients with (as defined by median cutoff), the prediction of clinical efficacy optimal efficacy responses could be identified. Conversely, was further improved (table 1). In addition to Treg scores, non- high expression of tumor intrinsic genes related to angiogene- responders (NR) to tislelizumab monotherapy could be further sis and the mTOR pathway may indicate resistance and sug- clustered into four subgroups (NR1, NR2, NR3, and NR4), gest potential future drug combinations for these patients. each exhibiting distinct resistance signatures. Despite a high level Both findings warrant further validation in a phase 3 study of immune infiltration, NR1 expressed a higher exhaustion sig- (NCT03967977). nature (CD96, CTLA4, TIGIT, HAVCR2, etc.) versus responders Acknowledgements Editorial assistance was provided by Ste- (P=0.01). Both NR2 and NR3 demonstrated a trend of phan Lindsey, PhD, and Elizabeth Hermans, PhD (OPEN enhanced cell-cycle signatures versus responders (P=0.07 and Health Medical Communications, Chicago. IL), and funded by P=0.08, respectively), accompanied by a lower NK signature the study sponsor. (KIR2DS4, KIR.panL, CD56) in NR2 and a lack of immune Trial Registration CTR20170071 infiltration in NR3. In the NR4 subgroup, a trend toward higher TH17 (P<0.01) and IL-17F signatures (Log2FC=0.56, http://dx.doi.org/10.1136/jitc-2020-SITC2020.0078 P=0.10) versus responders was observed. GEP-evaluable patients (n=12) receiving tislelizumab in combination with chemotherapy had an objective response rate of 58% (n=7), with a different copyright. gene signature pattern than those observed in patients receiving 79 TUMOR-IMMUNE SIGNATURES ASSOCIATED WITH monotherapy. Responders to combination therapy showed RESPONSE OR RESISTANCE TO TISLELIZUMAB (ANTI-PD- higher DNA repair expression versus NR (P=0.07), while 1) IN ESOPHAGEAL SQUAMOUS CELL CARCINOMA angiogenesis signatures were significantly higher in NR vs res- (ESCC) ponders (P=0.01). Consistent with this, NR exhibited higher 1 2 3 4 5 6 Jianming Xu, Nong Xu, Yuxian Bai, Chia-Chi Lin, Michael Millward, Jingwen Shi, expression of VEGFC at a single gene level (Log2FC=2.46, 6Yun Zhang, 6Xiaopeng Ma, 6Zhirong Shen, 6Ruiqi Huang, 6Wei Huang, 7Lin Shen*. 1The P <0.01). 2 Fifth Medical Center, General Hospit, BeiJing, China; The First Affiliated Hospital, College o, Conclusions While higher TLR signaling was associated with 3 4 Hangzhou, China; Harbin Medical University Cancer Hospita, Harbin, China; National clinical benefit of tislelizumab monotherapy, elevated Treg, Taiwan University Hospital, Taipei,
Recommended publications
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • IL-7 Receptor Blockade Blunts Antigen-Specific Memory T Cell
    ARTICLE DOI: 10.1038/s41467-018-06804-y OPEN IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates Lyssia Belarif1,2, Caroline Mary1,2, Lola Jacquemont1, Hoa Le Mai1, Richard Danger1, Jeremy Hervouet1, David Minault1, Virginie Thepenier1,2, Veronique Nerrière-Daguin1, Elisabeth Nguyen1, Sabrina Pengam1,2, Eric Largy3,4, Arnaud Delobel3, Bernard Martinet1, Stéphanie Le Bas-Bernardet1,5, Sophie Brouard1,5, Jean-Paul Soulillou1, Nicolas Degauque 1,5, Gilles Blancho1,5, Bernard Vanhove1,2 & Nicolas Poirier1,2 1234567890():,; Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen resti- mulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T- cell mediated chronic inflammatory diseases. 1 Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes 44093, France. 2 OSE Immunotherapeutics, Nantes 44200, France.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • SUPPLEMENTARY DATA Supplementary Tables Table S1
    1 SUPPLEMENTARY DATA 2 3 Supplementary Tables 4 Table S1. Gene signatures Gene signature Genes Cytolytic GNLY, KLRK1, KLRB1, GZMH, GZMA, KLRD1, NKG7 Cytotoxic CD8+ T cells CD8A, GZMA, GZMB, IFNG, EOMES, PRF1 Activated CD4+ T cells CD4, IL2RA, CD69 CD4+ Treg cells FOXP3, CTLA4, ICOS Immune checkpoints—T cells BTLA, LAG3, HAVCR2, PDCD1, TIGIT, CTLA4 T cells CD2, CD3D, CD3E, CD3G, CD6, TRAT1, CD28, LCK B cells CD79A, MS4A1, CD19, STAP1, KIAA0125, POU2AF1, FCRL5 NK cells SLAMF7, KLRC3, KLRK1, KLRC2, KLRD1 Monocytes CD14, CD16, CD163, CSF1R, HLA-DR LAPTM5, LAIR1, CD4, CSF1R, CD163, ADAP2, CD68, MRC1, M2 macrophages PTPRC, SLA, SEPSECS, MSR1, FPR3, FCGR2A, FCGR3A, IDO1, RERE, ABL2, CD163L1, STAT3, SBNO2, CSF1, CSF2 FAP, FN1, MMP2, BGN, LOXL2, PDPN, PDGFRB, COL12a1, Active fibroblasts COL5A1, COL8A2, THY1, PALLD Antigen processing TAPBP, TAP1, TAP2, PSMB9, PSMB8 Immune checkpoints—APC CD274, PDCD1LG2, IDO1 Costimulatory ligands CD40, CD80, CD86, CD70, TNFRSF18 CD27, CD28, ICOS, TNFRSF4, TNFRSF14, TNFRSF18, Costimulatory receptors TNFSF14, CD226 Myeloid inflammation CCL2, IL1B, CXCL8, IL6, PTGS2 1 DERL1, DERL2, DNAJB11, DNAJB9, DNAJC10, DNAJC3, ER stress EDEM1, EDEM2, EDEM3, EIF2AK3, ERO1L, HERPUD1, PDIA3, PDIA6, SEC61A1, SERP1, SYVN1 RRM2, UBE2C, BIRC5, CEP55, CCNB1, NUF2, NDC80, Proliferation MKI67, CDC20, TYMS 5 ER, endoplasmic reticulum; NK, natural killer. 6 7 2 8 Table S2. Most common all-cause and treatment-related AEs Patients (N = 45) All cause Treatment related Eventa Any grade Grade 3/4 Any grade Grade 3/4 Any AE 45 (100.0) 20 (44.4)
    [Show full text]
  • CD200, Human Recombinant Recombinant Human CD200, : 408-493-1800 | Fax: 408-493-1801 408-493-1801 Fax: | 408-493-1800
    BioVision 1/14 For research use only CD200, human recombinant CATALOG #: 7309-50 50 µg ALTERNATE NAMES: CD200 molecule, MOX1, MOX2, MRC, OX-2 SOURCE: E. coli PURITY: > 90% by SDS-PAGE MOL. WEIGHT: 24.8 kDa (225 aa, 31-232 aa + His tag), confirmed by MALDI-TOF. ENDOTOXIN LEVEL: < 1.0 EU per 1 µg of protein FORM: Liquid FORMULATION: 1 mg/ml in 20 mM Tris-HCl buffer (pH 8.0) containing 0.4M Urea. CD200, human recombinant STORAGE CONDITIONS: Can be stored at 4°C short term (1-2 weeks). For long term storage, aliquot and store at -20°C or - 70°C. Avoid repeated freezing and thawing RELATED PRODUCTS: cycles. • CD1E, human recombinant (Cat. No. 7308-100) • CD226, human recombinant (Cat. No. 7310-100) DESCRIPTION : CD200 is a type-1 membrane glycoprotein, which contains two • CD274, mouse recombinant (Cat. No. 7311-100) immunoglobulin domains, and thus belongs to the immunoglobulin superfamily. Studies of • CD300C, human recombinant (Cat. No. 7312-100) the related genes in mouse and rat suggest that this gene may regulate myeloid cell • CD3G, human recombinant (Cat. No. 7313-100) activity and delivers an inhibitory signal for the macrophage lineage in diverse tissues. • CD46, human recombinant (Cat. No. 7314-100) Multiple alternatively spliced transcript variants that encode different isoforms have been • CD5, human recombinant (Cat. No. 7315-100) • CD7, human recombinant (Cat. No. 7316-100) found for this gene. Recombinant human CD200 protein, fused to His-tag at N-terminus, • CD74, human recombinant (Cat. No. 7317-100) was expressed in E.coli. • CD79B, human recombinant (Cat.
    [Show full text]
  • CD226 T Cells Expressing the Receptors TIGIT and Divergent Phenotypes of Human Regulatory
    The Journal of Immunology Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226 Christopher A. Fuhrman,*,1 Wen-I Yeh,*,1 Howard R. Seay,* Priya Saikumar Lakshmi,* Gaurav Chopra,† Lin Zhang,* Daniel J. Perry,* Stephanie A. McClymont,† Mahesh Yadav,† Maria-Cecilia Lopez,‡ Henry V. Baker,‡ Ying Zhang,x Yizheng Li,{ Maryann Whitley,{ David von Schack,x Mark A. Atkinson,* Jeffrey A. Bluestone,‡ and Todd M. Brusko* Regulatory T cells (Tregs) play a central role in counteracting inflammation and autoimmunity. A more complete understanding of cellular heterogeneity and the potential for lineage plasticity in human Treg subsets may identify markers of disease pathogenesis and facilitate the development of optimized cellular therapeutics. To better elucidate human Treg subsets, we conducted direct transcriptional profiling of CD4+FOXP3+Helios+ thymic-derived Tregs and CD4+FOXP3+Helios2 T cells, followed by comparison with CD4+FOXP32Helios2 T conventional cells. These analyses revealed that the coinhibitory receptor T cell Ig and ITIM domain (TIGIT) was highly expressed on thymic-derived Tregs. TIGIT and the costimulatory factor CD226 bind the common ligand CD155. Thus, we analyzed the cellular distribution and suppressive activity of isolated subsets of CD4+CD25+CD127lo/2 T cells expressing CD226 and/or TIGIT. We observed TIGIT is highly expressed and upregulated on Tregs after activation and in vitro expansion, and is associated with lineage stability and suppressive capacity. Conversely, the CD226+TIGIT2 population was associated with reduced Treg purity and suppressive capacity after expansion, along with a marked increase in IL-10 and effector cytokine production. These studies provide additional markers to delineate functionally distinct Treg subsets that may help direct cellular therapies and provide important phenotypic markers for assessing the role of Tregs in health and disease.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
    Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database.
    [Show full text]