2011, Article ID 423938, 16 Pages Doi:10.4061/2011/423938
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1471-2148-10-132.Pdf
Shen et al. BMC Evolutionary Biology 2010, 10:132 http://www.biomedcentral.com/1471-2148/10/132 RESEARCH ARTICLE Open Access AResearch mitogenomic article perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae Yong-Yi Shen1,2,3, Lu Liang1,2,3, Yan-Bo Sun1,2,3, Bi-Song Yue4, Xiao-Jun Yang1, Robert W Murphy1,5 and Ya- Ping Zhang*1,2 Abstract Background: The Galliformes is a well-known and widely distributed Order in Aves. The phylogenetic relationships of galliform birds, especially the turkeys, grouse, chickens, quails, and pheasants, have been studied intensively, likely because of their close association with humans. Despite extensive studies, convergent morphological evolution and rapid radiation have resulted in conflicting hypotheses of phylogenetic relationships. Many internal nodes have remained ambiguous. Results: We analyzed the complete mitochondrial (mt) genomes from 34 galliform species, including 14 new mt genomes and 20 published mt genomes, and obtained a single, robust tree. Most of the internal branches were relatively short and the terminal branches long suggesting an ancient, rapid radiation. The Megapodiidae formed the sister group to all other galliforms, followed in sequence by the Cracidae, Odontophoridae and Numididae. The remaining clade included the Phasianidae, Tetraonidae and Meleagrididae. The genus Arborophila was the sister group of the remaining taxa followed by Polyplectron. This was followed by two major clades: ((((Gallus, Bambusicola) Francolinus) (Coturnix, Alectoris)) Pavo) and (((((((Chrysolophus, Phasianus) Lophura) Syrmaticus) Perdix) Pucrasia) (Meleagris, Bonasa)) ((Lophophorus, Tetraophasis) Tragopan))). Conclusions: The traditional hypothesis of monophyletic lineages of pheasants, partridges, peafowls and tragopans was not supported in this study. -
New Birds in Africa New Birds in Africa
1 2 3 4 5 6 7 NEWNEW BIRDSBIRDS ININ AFRICAAFRICA 8 9 10 11 The last 50 years 12 13 Text by Phil Hockey 14 15 Illustrations by Martin Woodcock from Birds of Africa, vols 3 and 4, 16 reproduced with kind permission of Academic Press, and 17 David Quinn (Algerian Nuthatch) reproduced from Tits, Nuthatches & 18 Treecreepers, with kind permission of Russel Friedman Books. 19 20 New birds are still being discovered in Africa and 21 elsewhere, proof that one of the secret dreams of most birders 22 23 can still be realized. This article deals specifically with African discoveries 24 and excludes nearby Madagascar. African discoveries have ranged from the cedar forests of 25 northern Algeria, site of the discovery of the Algerian Nuthatch 26 27 (above), all the way south to the east coast of South Africa. 28 29 ome of the recent bird discoveries in Africa have come case, of their discoverer. In 1972, the late Dr Alexandre 30 Sfrom explorations of poorly-known areas, such as the Prigogine described a new species of greenbul from 31 remote highland forests of eastern Zaïre. Other new spe- Nyamupe in eastern Zaïre, which he named Andropadus 32 cies have been described by applying modern molecular hallae. The bird has never been seen or collected since and 33 techniques capable of detecting major genetic differences Prigogine himself subse- quently decided that 34 between birds that were previously thought to be races of the specimen was of a melanis- 35 the same species. The recent ‘splitting’ of the Northern tic Little Greenbul Andropadus 36 and Southern black korhaans Eupodotis afraoides/afra of virens, a species with a 37 southern Africa is one example. -
Hybridization & Zoogeographic Patterns in Pheasants
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted. -
A High-Quality Assembly Reveals Genomic Characteristics, 1
A High-Quality Assembly Reveals Genomic Characteristics, 1 Phylogenetic Status and Causal Genes for White Feather of 2 Indian Peafowl shaojuan Liu South China Agricultural University College of Animal Science hao Chen Jiangxi Science and Technology Normal University School of Life Science jing Ouyang Jiangxi Science and Technology Normal University School of Life Science min Huang South China Agricultural University College of Animal Science hui Zhang South China Agricultural University College of Animal Science sumei Zheng South China Agricultural University College of Animal Science suwang Xi Jiangxi Agricultural University College of Animal Science and Technology hongbo Tang Jiangxi Science and Technology Normal University School of Life Science yuren Gao Jiangxi Science and Technology Normal University School of Life Science yanpeng Xiong Jiangxi Science and Technology Normal University School of Life Science di Cheng Jiangxi Agricultural University College of Animal Science and Technology kaifeng Chen Jiangxi Agricultural University College of Animal Science and Technology bingbing Liu South China Agricultural University College of Animal Science wanbo Li Jimei University xueming Yan Jiangxi Science and Technology Normal University School of Life Science huirong Mao ( [email protected] ) Jiangxi Agricultural University https://orcid.org/0000-0003-2588-1521 jun Ren South China Agricultural University College of Animal Science Research Keywords: Indian peafowl, Genome assembly, Phylogeny, PMEL, White feather Posted Date: July -
An Update of Wallacels Zoogeographic Regions of the World
REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009). -
Incubator Birds: Biogeographical Origins and Evolution Of
Journal of Biogeography (J. Biogeogr.) (2014) 41, 2045–2056 ORIGINAL Incubator birds: biogeographical origins ARTICLE and evolution of underground nesting in megapodes (Galliformes: Megapodiidae) Rebecca B. Harris1,2*, Sharon M. Birks2 and Adam D. Leache1,2 1Department of Biology, University of ABSTRACT Washington, Seattle, WA 98195, USA, 2Burke Aim Unique amongst birds, megapodes (family Megapodiidae) have exchanged Museum of Natural History and Culture, the strategy of incubating eggs with the warmth of their bodies for incubation University of Washington, Seattle, WA 98195, USA behaviours that rely entirely on environmental heat sources. Typically, mound- builders capture heat released from the decomposition of organic materials, while burrow-nesters lay their eggs in geothermal or solar-heated soils. The evolutionary path towards novel incubation behaviours has led to ecological and physiological adaptations unique to megapodes. Here, we present a species tree for all extant megapodes that settles long-standing debates about mega- pode evolution: namely, their biogeographical origins and ancestral nesting behaviour. Location Australasia. Methods A time-calibrated multilocus species tree for all extant megapodes was constructed using *beast. We estimated and compared divergence dates for megapodes obtained from molecular rates, fossils, and a combination of fossils and rates. Using this tree, Bayesian estimation of ancestral nesting behaviour was conducted in BayesTraits and ancestral ranges were estimated in BioGeoBEARS. Results Recent dispersal has led to the recolonization of mainland Australia and New Guinea by Megapodius. Bayesian estimation of ancestral states indi- cates that mound building is the most probable ancestral nesting behaviour in megapodes (posterior probability = 0.75). Burrow nesting was acquired early in the diversification of the family (at least 14 Ma), followed by a single switch back to mound building. -
Ultimate Papua New Guinea Ii
The fantastic Forest Bittern showed memorably well at Varirata during this tour! (JM) ULTIMATE PAPUA NEW GUINEA II 25 AUGUST – 11 / 15 SEPTEMBER 2019 LEADER: JULIEN MAZENAUER Our second Ultimate Papua New Guinea tour in 2019, including New Britain, was an immense success and provided us with fantastic sightings throughout. A total of 19 Birds-of-paradise (BoPs), one of the most striking and extraordinairy bird families in the world, were seen. The most amazing one must have been the male Blue BoP, admired through the scope near Kumul lodge. A few females were seen previously at Rondon Ridge, but this male was just too much. Several males King-of-Saxony BoP – seen displaying – ranked high in our most memorable moments of the tour, especially walk-away views of a male obtained at Rondon Ridge. Along the Ketu River, we were able to observe the full display and mating of another cosmis species, Twelve-wired BoP. Despite the closing of Ambua, we obtained good views of a calling male Black Sicklebill, sighted along a new road close to Tabubil. Brown Sicklebill males were seen even better and for as long as we wanted, uttering their machine-gun like calls through the forest. The adult male Stephanie’s Astrapia at Rondon Ridge will never be forgotten, showing his incredible glossy green head colours. At Kumul, Ribbon-tailed Astrapia, one of the most striking BoP, amazed us down to a few meters thanks to a feeder especially created for birdwatchers. Additionally, great views of the small and incredible King BoP delighted us near Kiunga, as well as males Magnificent BoPs below Kumul. -
Early Holocene Chicken Domestication in Northern China
Early Holocene chicken domestication in northern China Hai Xianga, Jianqiang Gaob, Baoquan Yuc, Hui Zhoud, Dawei Caid, Youwen Zhanga, Xiaoyong Chena, Xi Wanga, Michael Hofreitere,1, and Xingbo Zhaoa,1 aNational Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; bHebei Provincial Institute of Cultural Relic, Shijiazhuang 050031, China; cXushui County Office for Preservation of Ancient Monuments, Xushui 072550, China; dAncient DNA Laboratory, Research Center for Chinese Frontier Archaeology, College of Life Science, Jilin University, Changchun 130023, China; eFaculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; and Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom Edited by Elizabeth Matisoo-Smith, Otago School of Medical Sciences, Dunedin, New Zealand, and accepted by the Editorial Board October 23, 2014 (received for review June 24, 2014) Chickens represent by far the most important poultry species, yet of chicken domestication in particular regions over the world the number, locations, and timings of their domestication have have also been worked out using ancient DNA analysis (14–17). remained controversial for more than a century. Here we report However, the oldest chicken sequences analyzed to date are only ancient mitochondrial DNA sequences from the earliest archaeo- around 4,000 y old, substantially postdating the beginning of logical chicken bones from China, dating back to ∼10,000 B.P. The chicken domestication. results clearly show that all investigated bones, including the old- Therefore, we chose 39 ancient chicken bones from three est from the Nanzhuangtou site, are derived from the genus Gal- archaeological sites in the area of the Yellow River (Cishan, lus, rather than any other related genus, such as Phasianus. -
Insecta: Phthiraptera) Q
International Journal for Parasitology 47 (2017) 347–356 Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Comparative cophylogenetics of Australian phabine pigeons and doves (Aves: Columbidae) and their feather lice (Insecta: Phthiraptera) q a, b a Andrew D. Sweet ⇑, R. Terry Chesser , Kevin P. Johnson a Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL 61820, USA b USGS Patuxent Wildlife Research Center, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, USA article info abstract Article history: Host–parasite coevolutionary histories can differ among multiple groups of parasites associated with the Received 26 October 2016 same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World Received in revised form 16 December 2016 pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting Accepted 22 December 2016 higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and Available online 10 February 2017 body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular Keywords: sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three Wing lice groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both par- Body lice Australia asite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New Hippoboscid flies World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. -
Observation on a Sooty Grouse Population at Sage Hen Creek
THE CONDOR--- VOLUME 58 SEPTEMBER-OCTOBER, 1956 NUMBER 5 OBSERVATIONS ON A SOOTY GROUSE POPULATION AT SAGE HEN CREEK, CALIFORNIA By ROBERT S. HOFFMANN In recent years there has been considerable interest in two separate aspects of the biology of Blue Grouse (Dendragapus) . The first of these is the controversy concerning their taxonomy. The genus is widely distributed in the coniferous forests of the western states and consists of two groups of races recognized by some as separate species: the fuliginosus group, or Sooty Grouse, along the Pacific coast, and the obscures group, or Dusky Grouse, in the Great Basin and Rocky Mountain areas. Originally these two groups were placed under the name Dendragapus obscurus on the basis of supposed intergradation (Bendire, 1892:41,44, SO). The work of Brooks (1912,1926,1929) and Swarth (1922, 1926), however, led to their separation in the fourth edition of the A.O.U. Check-list (1931) into coastal and interior species. This split stood until the publication of the 19th Supplement to the A.O.U. Check-list (1944) when, following Peters (1934), D. fuliginosus and its subspecieswere replaced under D. obscurus. Al- though at that time some doubt was still expressedabout the correctnessof this merger (Grinnell and Miller, 1944: 113), intergradation in northern Washington and southern British Columbia between the races fuliginosus and pallidus has now been reported by several authors (Munro and Cowan, 1947:89; Carl, Guiguet, and Hardy, 1952:86; Jewett, Taylor, Shaw, and Aldrich, 1953 : 200). The taxonomy of these grouse must rest upon the fact of intergradation between the two groups of races. -
Dusky Grouse Tend to Be Adapted Dusky and Sooty Grouse Were Considered Distinct
Volt.un£ 14 .Numkt 3 9all2006 Blue Grouse divided by two equals Dusky and Sooty Grouse Michael A. Schroeder, Upland Bird Research Biologist Washington Department of Fish and Wildlife P.O. Box 1077 Bridgeport, W A 98813 email: [email protected] The state of Washington has a new species of grouse, at least forested habitats throughout the year, it appears to be according to the American Ornithologists Union (Auk, 2006, vulnerable to variations in forest practices. For example, Pages 926-936). Dendragapus obscurus (formerly known as research on Sooty Grouse in British Columbia indicated that the Blue Grouse) has now been split into 2 species based on their populations fluctuated dramatically depending on the genetic, morphological, and behavioral evidence; the Dusky age of the forest following clear-cutting. Unfortunately, there Grouse (Dendragapus obscurus) and the Sooty Grouse has been little effort to evaluate the relationship between (Dendragapus fuliginosus). This split is actually a reversion forest management practices and Sooty Grouse populations. to the previous situation during the early 1900s when the In contrast to Sooty Grouse, Dusky Grouse tend to be adapted Dusky and Sooty Grouse were considered distinct. to relatively open habitats in forest openings or close to forest edges. Because these open habitats are preferred areas for As a group, Dusky and Sooty Grouse are widely distributed livestock production and development, it is necessary to in the mountainous portions of western North America. understand the relationships between land use and grouse Although they generally winter in coniferous forest, their populations. The human population increase in the breeding breeding habitats are quite varied. -
Occurrence and Timing of Egg Teeth in Birds
OCCURRENCE AND TIMING OF EGG TEETH IN BIRDS GEORGE A. CLARK, JR. HE egg tooth is a small tooth-like protuberance on the distal end of the T dorsal surface of the upper mandible at the time of hatching. It is generally believed that the egg tooth functions in cutting through the shell membranes and shell at hatching. In addition to egg teeth on the upper mandible, a number of authors have noted tooth-like modifications of various kinds at the tip of the lower mandible in embryos or newly hatched birds of a variety of families. The objective of this paper is to present an extended review of scattered records of egg teeth as a stimulus and aid for further studies on the morphology, function, development, and evolution of these structures. In spite of the great significance of hatching in the life of the bird, very little is known of the causal relations involved in the process. Certain correlated events such as respiratory, circulatory, and behavioral changes are known, but in no case have the factors responsible for the timing of hatching been specifi- cally identified. The role of the egg tooth in hatching also needs further study. Fisher (1953) studied the development in the chicken of the hatching muscle which may be important in the functionin g of the egg tooth. It has been sug- gested that the hatching muscle provides a major part of the thrust in breaking through the shell. The egg tooth is possibly unique as a structure functional only at the time of hatching.