Nitidulidae 317 Nomina Insecta Nearctica

Total Page:16

File Type:pdf, Size:1020Kb

Nitidulidae 317 Nomina Insecta Nearctica 316 NOMINA INSECTA NEARCTICA Carpophilus brevipennis Blanchard 1842 (Nitidula) Colopterus maculatus Erichson 1843 (Colastus) Carpophilus lacertosus Murray 1864 Syn. Colopterus morio Erichson 1843 (Colastus) Carpophilus purpureipennis Murray 1864 Syn. Colopterus semitecta Say 1825 (Niditula) Carpophilus ignobilis Fall 1910 Syn. Colopterus testaceus Gillogly 1969 (Colopterus) Carpophilus californicus Schaeffer 1911 (Carpophilus) Colopterus truncata Randall 1838 (Nitidula) Carpophilus corticinus Erichson 1843 (Carpophilus) Colastus infimus Erichson 1843 Syn. Carpophilus craigheadi Dobson 1972 (Carpophilus) Colastus limbatus LeConte 1858 Syn. Carpophilus deflexus Sharp 1889 (Carpophilus) Colastus obliquus LeConte 1858 Syn. Carpophilus dimidiata Fabricius 1792 (Nitidula) Colastus triangularis Murray 1864 Syn. Carpophilus pusillus Stephens 1830 Syn. Colopterus unicolor Say 1825 (Nitidula) Carpophilus auropilosus Wollaston 1854 Syn. Colastus obscurus Erichson 1843 Syn. Nitidula contingens Walker 1858 Syn. Carpophilus puberulus Montrouzier 1860 Syn. Conotelus Erichson 1842 Carpophilus ochropterus Klug 1862 Syn. Carpophilus dilutus Murray 1864 Syn. Conotelus fuscipennis Erichson 1843 (Conotelus) Carpophilus limbalis Murray 1864 Syn. Conotelus punctatus Schaeffer 1911 Syn. Carpophilus nigritus Murray 1864 Syn. Conotelus mexicanus Murray 1864 (Conotelus) Carpophilus robustus Murray 1864 Syn. Conotelus obscurus Erichson 1843 (Conotelus) Carpophilus testaceus Murray 1864 Syn. Conotelus stenoides Murray 1864 (Conotelus) Carpophilus vittiger Murray 1864 Syn. Carpophilus luridus Murray 1864 Syn. Cryptarcha Shuckard 1839 Carpophilus lewisi Reitter 1884 Syn. Arhina Murray 1867 Syn. Carpophilus discoideus LeConte 1858 (Carpophilus) Lepiarcha Sharp 1891 Syn. Carpophilus apicalis LeConte 1859 Syn. Cryptarchula Ganglbauer 1899 Syn. Tribrachys caudalis LeConte 1859 Syn. Carpophilus floralis Erichson 1843 (Carpophilus) Cryptarcha ampla Erichson 1843 (Cryptarcha) Carpophilus freemani Dobson 1956 (Carpophilus) Cryptarcha concinna Melsheimer 1853 (Cryptarcha) Carpophilus fumatus Boheman 1851 (Carpophilus) Cryptarcha liturata LeConte 1863 Syn. Carpophilus funebris Sharp 1889 (Carpophilus) Cryptarcha picta Melsheimer 1866 Syn. Carpophilus hemipterus Linnaeus 1758 (Dermestes) Cryptarcha bella Reitter 1873 Syn. Silpha bimaculatus Linnaeus 1767 Syn. Cryptarcha gila Parsons 1938 (Cryptarcha) Carpophilus humeralis Fabricius 1798 (Nitidula) Cryptarcha glabra Schaeffer 1909 (Cryptarcha) Brachypterus picinus Boheman 1851 Syn. Cryptarcha strigatula Parsons 1938 (Cryptarcha) Carpophilus foveicollis Murray 1864 Syn. Carpophilus rickseckeri Fall 1910 Syn. Cybocephalus Erichson 1844 Carpophilus ligneus Murray 1864 (Carpophilus) Phantozomerus Jacquelin du Val 1854 Syn. Carpophilus decipiens Horn 1879 Syn. Stegnomorpha Wollaston 1854 Syn. Carpophilus longiventris Sharp 1889 (Carpophilus) Acribus Waterhouse 1877 Syn. Carpophilus longus Fall 1910 (Carpophilus) Carpophilus lugubris Murray 1864 (Carpophilus) Cybocephalus californicus Horn 1879 (Cybocephalus) Carpophilus marginatus Erichson 1843 (Carpophilus) Cybocephalus nigritulus LeConte 1863 (Cybocephalus) Carpophilus marginellus Motschulsky 1858 (Carpophilus) Carpophilus nitens Fall 1910 Syn. Cychramus Kugelann 1794 Carpophilus melanopterus Erichson 1843 (Carpophilus) Quadrifrons Blatchley 1916 Syn. Carpophilus mutilatus Erichson 1843 (Carpophilus) Carpophilus niger Say 1823 (Cercus) Cychramus adustus Erichson 1843 (Cychramus) Carpophilus nigrovittatus Parsons 1943 (Carpophilus) Cychramus bicolor Horn 1879 Syn. Carpophilus obsoletus Erichson 1843 (Carpophilus) Cychramus castaneus Blatchley 1916 (Quadrifrons) Carpophilus cribellatus Motschulsky 1858 Syn. Cychramus zimmermanni Horn 1879 (Cychramus) Carpophilus strigipennis Motschulsky 1858 Syn. Carpophilus funereus Reitter 1884 Syn. Cyllodes Erichson 1843 Carpophilus pallipennis Say 1823 (Cercus) Pseudocamptodes Grouvelle 1896 Syn. Carpophilus pollens Sharp 1889 Syn. Carpophilus pilosellus Motschulsky 1858 (Carpophilus) Cyllodes biplagiatus LeConte 1866 (Cyllodes) Carpophilus floridanus Fall 1910 Syn. Carpophilus rufiventris Schaeffer 1911 (Carpophilus) Epuraea Erichson 1843 Carpophilus rufus Murray 1864 (Carpophilus) Dadopora Thomson 1874 Syn. Carpophilus sayi Parsons 1943 (Carpophilus) Epuraenella Crotch 1874 Syn. Carpophilus tempestivus Erichson 1843 (Carpophilus) Micruria Reitter 1874 Syn. Carpophilus terminatus Murray 1864 Syn. Micrurula Reitter 1874 Syn. Carpophilus yuccae Crotch 1874 (Colastus) Omosiphora Reitter 1875 Syn. Carpophilus zuni Casey 1884 (Carpophilus) Epuraea adumbrata Mannerheim 1842 (Epuraea) Colopterus Erichson 1842 Epuraea alternans Grouvelle 1912 (Epuraea) Colastus Erichson 1843 Syn. Epuraea alticola Fall 1907 Homo. Cyllopodes Murray 1864 Syn. Epuraea alternata Parsons 1969 (Epuraea) Colopterus floridanus Parry 1975 (Colopterus) Epuraea ambigua Mannerheim 1843 (Epuraea) Colopterus gerhardi Dodge 1939 (Colopterus) Epuraea avara Randall 1838 (Nitidula) COLEOPTERA: NITIDULIDAE 317 NOMINA INSECTA NEARCTICA Epuraea nubila LeConte 1857 Syn. Haptoncura Reitter 1875 Syn. Epuraea boreades Parsons 1967 (Epuraea) Epuraea boreella Zetterstedt 1828 (Nitidula) Haptoncus californicus Gillogly 1946 (Haptoncus) Epuraea corticina Erichson 1843 (Epuraea) Haptoncus luteola Erichson 1843 (Epuraea) Epuraea depressa Illiger 1798 (Nitidula) Nitidula intendens Walker 1858 Syn. Epuraea convexiuscula Mannerheim 1843 Syn. Haptoncus pubescens Murray 1864 Syn. Epuraea erichsoni Reitter 1873 (Epuraea) Haptoncus pauperculus Reitter 1873 Syn. Epuraea eximia Parsons 1969 (Epuraea) Epuraea texana Crotch 1874 Syn. Epuraea flavomaculata Mäklin 1853 (Epuraea) Haptoncus subquadratus Reitter 1877 Syn. Epuraea fulvescens Horn 1879 (Epuraea) Haptoncus floreolus Sharp 1890 Syn. Epuraea helvola Erichson 1843 (Epuraea) Omosita castanea Melsheimer 1846 Syn. Lobiopa Erichson 1843 Epuraea rufa Reitter 1873 Homo. Epuraea horni Crotch 1874 (Epuraea) Lobiopa brunnescens Blatchley 1917 (Soronia) Epuraea duryi Blatchley 1910 Syn. Lobiopa falli Parsons 1939 (Lobiopa) Epuraea integra Horn 1879 (Epuraea) Lobiopa insularis Laporte 1840 (Nitidula) Epuraea labilis Erichson 1843 (Epuraea) Lobiopa contaminata Erichson 1843 Syn. Epuraea lengi Parsons 1969 (Epuraea) Labiopa decumana Erichson 1843 Syn. Epuraea linearis Mäklin 1853 (Epuraea) Lobiopa dimidiata Erichson 1843 Syn. Epuraea macrophthalma Reitter 1873 (Epuraea) Lobiopa grandis Erichson 1843 Syn. Epuraea obliquus Hatch 1962 (Epuraea) Lobiopa oblonga Parsons 1939 (Lobiopa) Epuraea obtusicollis Reitter 1873 (Epuraea) Lobiopa punctata Parsons 1939 (Lobiopa) Epuraea ovata Horn 1879 Syn. Lobiopa setosa Harold 1868 (Lobiopa) Epuraea papagona Casey 1884 (Epuraea) Lobiopa setulosa LeConte 1863 Homo. Epuraea parsonsi Connell 1981 (Epuraea) Soronia substriata Hamilton 1893 Syn. Epuraea peltoides Horn 1879 (Epuraea) Lobiopa undulata Say 1825 (Nitidula) Epuraea planulata Erichson 1843 (Epuraea) Epuraea placida Mäklin 1853 Syn. Meligethes Stephens 1832 Epuraea populi Dodge 1939 (Epuraea) Acanthogethes Reitter 1871 Syn. Epuraea rectangula Connell 1981 (Epuraea) Idiogethes Kirejtshuk 1977 Syn. Epuraea rufa Say 1825 (Nitidula) Omosita badia Melsheimer 1846 Syn. Meligethes atrata Olivier 1790 (Nitidula) Epuraea rotundicollis Reitter 1873 Syn. Nitidula rufipes Marsham 1802 Syn. Epuraea rufida Melsheimer 1846 (Omosita) Meligethes canadensis Easton 1955 (Meligethes) Epuraea scaphoides Horn 1879 (Epuraea) Meligethes cleominis Easton 1959 (Meligethes) Epuraea terminalis Mannerheim 1843 (Epuraea) Meligethes nigrescens Stephens 1830 (Meligethes) Epuraea immunda Sturm 1844 Syn. Meligethes xanthoceros Stephens 1830 Syn. Epuraea infuscata Mäklin 1853 Syn. Meligethes picipes Sturm 1845 Syn. Epuraea truncatella Mannerheim 1846 (Epuraea) Meligethes funebris Foerster 1849 Syn. Epuraea nigra Mäklin 1853 Syn. Meligethes seminulum LeConte 1857 Syn. Epuraea ornatula Notman 1919 Syn. Meligethes saulcyi Reitter 1872 Syn. Epuraea umbrosa Horn 1879 (Epuraea) Meligethes subsimilis Rey 1889 Syn. Meligethes circularis Sahlberg 1903 Syn. Glischrochilus Reitter 1873 Meligethes pinguis Horn 1879 (Meligethes) Librodor Reitter 1884 Syn. Meligethes rufimanus LeConte 1857 (Meligethes) Meligethes ruficornis LeConte 1859 Homo. Glischrochilus confluenta Say 1823 (Engis) Meligethes moerens LeConte 1868 Syn. Glischrochilus fasciata Olivier 1790 (Nitidula) Meligethes mutatus Harold 1868 Syn. Ips quadrimaculosa Melsheimer 1846 Syn. Meligethes californicus Reitter 1871 Syn. Ips geminatus Melsheimer 1846 Syn. Meligethes saevus LeConte 1859 (Meligethes) Ips cylindricus LeConte 1863 Homo. Meligethes simplipes Easton 1947 (Meligethes) Glischrochilus lecontei Brown 1932 (Glischrochilus) Glischrochilus moratus Brown 1932 (Glischrochilus) Nitidula Fabricius 1775 Glischrochilus obtusa Say 1835 (Ips) Glischrochilus quadrisignatus Say 1835 (Ips) Nitidula bipunctata Linnaeus 1758 (Silpha) Ips bipunctatus Melsheimer 1844 Homo. Silpha bipustulata Linnaeus 1761 Syn. Ips bipustulutus Melsheimer 1844 Homo. Dermestes scaraboides Scopoli 1763 Syn. Ips similis Melsheimer 1846 Syn. Nitidula impustulata Ganglbauer 1899 Syn. Ips sexpustulatus Reitter 1873 Syn. Nitidula carnaria Schaller 1783 (Silpha) Glischrochilus canadensis Brown 1932 Syn. Nitidula quadripustulata Fabricius 1792 Syn. Glischrochilus sanguinolenta Olivier 1790 (Nitidula) Nitidula guttalis Herbst 1793 Syn. Ips rubromaculatus Reitter 1873 Syn. Nitidula variata Stephens 1830 Syn. Glischrochilus siepmanni Brown 1932 (Glischrochilus) Nitidula flavipennis Heer
Recommended publications
  • Elytra Reduction May Affect the Evolution of Beetle Hind Wings
    Zoomorphology https://doi.org/10.1007/s00435-017-0388-1 ORIGINAL PAPER Elytra reduction may affect the evolution of beetle hind wings Jakub Goczał1 · Robert Rossa1 · Adam Tofilski2 Received: 21 July 2017 / Revised: 31 October 2017 / Accepted: 14 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Beetles are one of the largest and most diverse groups of animals in the world. Conversion of forewings into hardened shields is perceived as a key adaptation that has greatly supported the evolutionary success of this taxa. Beetle elytra play an essential role: they minimize the influence of unfavorable external factors and protect insects against predators. Therefore, it is particularly interesting why some beetles have reduced their shields. This rare phenomenon is called brachelytry and its evolution and implications remain largely unexplored. In this paper, we focused on rare group of brachelytrous beetles with exposed hind wings. We have investigated whether the elytra loss in different beetle taxa is accompanied with the hind wing shape modification, and whether these changes are similar among unrelated beetle taxa. We found that hind wings shape differ markedly between related brachelytrous and macroelytrous beetles. Moreover, we revealed that modifications of hind wings have followed similar patterns and resulted in homoplasy in this trait among some unrelated groups of wing-exposed brachelytrous beetles. Our results suggest that elytra reduction may affect the evolution of beetle hind wings. Keywords Beetle · Elytra · Evolution · Wings · Homoplasy · Brachelytry Introduction same mechanism determines wing modification in all other insects, including beetles. However, recent studies have The Coleoptera order encompasses almost the quarter of all provided evidence that formation of elytra in beetles is less currently known animal species (Grimaldi and Engel 2005; affected by Hox gene than previously expected (Tomoyasu Hunt et al.
    [Show full text]
  • A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
    ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species).
    [Show full text]
  • Keys to Families of Beetles in America North of Mexico
    816 · Key to Families Keys to Families of Beetles in America North of Mexico by Michael A. Ivie hese keys are specifically designed for North American and, where possible, overly long lists of options, but when nec- taxa and may lead to incorrect identifications of many essary, I have erred on the side of directing the user to a correct Ttaxa from outside this region. They are aimed at the suc- identification. cessful family placement of all beetles in North America north of No key will work on all specimens because of abnormalities Mexico, and as such will not always be simple to use. A key to the of development, poor preservation, previously unknown spe- most common 50% of species in North America would be short cies, sexes or variation, or simple errors in characterization. Fur- and simple to use. However, after an initial learning period, most thermore, with more than 30,000 species to be considered, there coleopterists recognize those groups on sight, and never again are undoubtedly rare forms that escaped my notice and even key them out. It is the odd, the rare and the exceptional that make possibly some common and easily collected species with excep- a complex key necessary, and it is in its ability to correctly place tional characters that I overlooked. While this key should work those taxa that a key is eventually judged. Although these keys for at least 95% of specimens collected and 90% of North Ameri- build on many previous successful efforts, especially those of can species, the specialized collector who delves into unique habi- Crowson (1955), Arnett (1973) and Borror et al.
    [Show full text]
  • Coleoptera: Scarabaeidae)
    Systematic Entomology (2005), 31, 113–144 DOI: 10.1111/j.1365-3113.2005.00307.x The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters (Coleoptera: Scarabaeidae) DIRK AHRENS Deutsches Entomologisches Institut im Zentrum fu¨r Agrarlandschafts- und Landnutzungsforschung Mu¨ncheberg, Germany Abstract. To reconstruct the phylogeny of the Sericini and their systematic position among the scarabaeid beetles, cladistic analyses were performed using 107 morphological characters from the adults and larvae of forty-nine extant scarabaeid genera. Taxa represent most ‘traditional’ subfamilies of coprophagous and phytophagous Scarabaeidae, with emphasis on the Sericini and other melo- lonthine lineages. Several poorly studied exoskeletal features have been examined, including the elytral base, posterior wing venation, mouth parts, endosternites, coxal articulation, and genitalia. The results of the analysis strongly support the monophyly of the ‘orphnine group’ þ ‘melolonthine group’ including phytopha- gous scarabs such as Dynastinae, Hopliinae, Melolonthinae, Rutelinae, and Cetoniinae. This clade was identified as the sister group to the ‘dung beetle line’ represented by Aphodius þ Copris. The ‘melolonthine group’ is comprised in the strict consensus tree by two major clades and two minor lineages, with the included taxa of Euchirinae, Rutelinae, and Dynastinae nested together in one of the major clades (‘melolonthine group I’). Melolonthini, Cetoniinae, and Rutelinae are strongly supported, whereas Melolonthinae and Pachydemini appear to be paraphyletic. Sericini þ Ablaberini were identified to be sister taxa nested within the second major melolonthine clade (‘melolonthine group II’). As this clade is distributed primarily in the southern continents, one could assume that Sericini þ Ablaberini are derived from a southern lineage.
    [Show full text]
  • Coleoptera: Tenebrionoidea)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2010 Volume 50(1), pp. 157–166 ISSN 0374-1036 A review of Ripiphoridae in the Arabian Peninsula (Coleoptera: Tenebrionoidea) Jan BATELKA Nad Vodovodem 16, CZ-100 00 Praha 10, Czech Republic; e-mail: [email protected] Abstract. Distribution of the Ripiphoridae (Coleoptera: Tenebrionoidea) in the Arabian Peninsula is evaluated. Six species belonging to the genera Macrosiagon Hentz, 1830 and Ripiphorus Bosc, 1791 are fi gured and keyed, and the distribution of each species is mapped. Including new and previously published records, the Ripiphoridae are now reported from 19 localities of the Arabian Peninsula and offshore islands. Coordinates for each exact locality are given. Key words. Coleoptera, Tenebrionoidea, Ripiphoridae, Ripiphorinae, Macrosia- gon, Ripiphorus, faunistics, Arabian Peninsula, Palaearctic Region Introduction The Ripiphoridae (Coleoptera: Tenebrionoidea) are a cosmopolitan group of parasitoids, whose biogeography is only poorly understood. Only scarce distributional data are usually available because of their cryptic way of life in larval stages and short-lived adults. The Arabian Peninsula plays an important role in the understanding of their distribution in the Old World, as it is a transitional zone among three main zoogeographical realms: Afrotropical, Oriental and Palaearctic. The aim of this paper is to provide basis for further studies of the Ripiphoridae in this part of Asia and to make further research easier for those students who are not familiar with these rarely collected beetles. Each species is keyed and fi gured based on specimens collected in the Arabian Peninsula, with emphasis on colour variability and also on sexual dimorphism where appropriate.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • From Characters of the Female Reproductive Tract
    Phylogeny and Classification of Caraboidea Mus. reg. Sci. nat. Torino, 1998: XX LCE. (1996, Firenze, Italy) 107-170 James K. LIEBHERR and Kipling W. WILL* Inferring phylogenetic relationships within Carabidae (Insecta, Coleoptera) from characters of the female reproductive tract ABSTRACT Characters of the female reproductive tract, ovipositor, and abdomen are analyzed using cladi­ stic parsimony for a comprehensive representation of carabid beetle tribes. The resulting cladogram is rooted at the family Trachypachidae. No characters of the female reproductive tract define the Carabidae as monophyletic. The Carabidac exhibit a fundamental dichotomy, with the isochaete tri­ bes Metriini and Paussini forming the adelphotaxon to the Anisochaeta, which includes Gehringiini and Rhysodini, along with the other groups considered member taxa in Jeannel's classification. Monophyly of Isochaeta is supported by the groundplan presence of a securiform helminthoid scle­ rite at the spermathecal base, and a rod-like, elongate laterotergite IX leading to the explosion cham­ ber of the pygidial defense glands. Monophyly of the Anisochaeta is supported by the derived divi­ sion of gonocoxa IX into a basal and apical portion. Within Anisochaeta, the evolution of a secon­ dary spermatheca-2, and loss ofthe primary spermathcca-I has occurred in one lineage including the Gehringiini, Notiokasiini, Elaphrini, Nebriini, Opisthiini, Notiophilini, and Omophronini. This evo­ lutionary replacement is demonstrated by the possession of both spermatheca-like structures in Gehringia olympica Darlington and Omophron variegatum (Olivier). The adelphotaxon to this sper­ matheca-2 clade comprises a basal rhysodine grade consisting of Clivinini, Promecognathini, Amarotypini, Apotomini, Melaenini, Cymbionotini, and Rhysodini. The Rhysodini and Clivinini both exhibit a highly modified laterotergite IX; long and thin, with or without a clavate lateral region.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Of the Galapagos Islands, Ecuador
    Belgian Journal ofEntomology 5 (2003) : 89-102 A review of the Oedemeridae (Coleoptera) of the Galapagos Islands, Ecuador Stewart B. PECK and Joyce COOK Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada (e-mail: ste'[email protected]). Abstract Extensive new collections contribute new information on the identity and distribution of the oedemerid beetles of the Galiipagos Islands. Specimens previously recorded as near Oxacis pilosa CHAMPION are descn'bed as Oxycopis galapagoensis sp. n. Oxacis pilosa CHAMPION of Guatemala and Nicaragua is transferred to the genus Oxycopis. Hypasclera collenettei (BLAIR) is the most common and widespread species in the islands, and is variable in that it shows significant differences in aedeagus morphology between separate islands. Alloxacis hoodi V AN DYKE is found be a synonym of H. collenettei. H. seymourensis (MUTCHLER) is known only from the central islands. Paroxacis galapagoensis (LINELL) is also widespread. All four Galapagos species are presently considered to be endemic, and each represents a separate ancestral colonization of the archipelago. Keywords: · Hypasclera, Oxycopis, Paroxacis, island insects, endemic species, colonization. Introduction Members of the beetle family Oedemeridae are commonly called the false blister beetles. Adults are found frequently at lights or by sweeping vegetation, and they are obligate pollen feeders (AR.NETT, 1984). Larvae may feed on plant roots or may be inhabitants of moist decaying wood and some may live in salt-soaked driftwood (ARNETT, 1984, KrusKA, 2002). Oedemerids have been described and reported from the Galapagos by several workers: BLAIR (1928; 1933); F'RANZ (1985); LINELL (1898); MUTCHLER (1938); and VAN DYKE (1953).
    [Show full text]
  • Diversidad De Cantharidae, Lampyridae
    Revista Mexicana de Biodiversidad 80: 675- 686, 2009 Diversidad de Cantharidae, Lampyridae, Lycidae, Phengodidae y Telegeusidae (Coleoptera: Elateroidea) en un bosque tropical caducifolio de la sierra de San Javier, Sonora, México Diversity of Cantharidae, Lampyridae, Lycidae, Phengodidae and Telegeusidae (Coleoptera: Elateroidea) in a tropical dry forest of the Sierra San Javier, Sonora, Mexico Santiago Zaragoza-Caballero1* y Enrique Ramírez-García2 1Laboratorio de Entomología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-153, 04510 México D. F., México. 2Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, San Patricio 48980 Jalisco, México. *Correspondencia: [email protected] Resumen. Se presenta un estudio de la diversidad faunística de las familias Cantharidae, Lampyridae, Lycidae, Phengodidae y Telegeusidae (Coleoptera: Elateroidea), presentes en un bosque tropical caducifolio de la sierra de San Javier, Sonora, México, que corresponde al límite boreal de este biotopo en América. La recolección incluyó trampas de atracción luminosa y red entomológica aérea, se realizó en noviembre de 2003, febrero y abril de 2004, y de julio a octubre de ese mismo año, durante 5 días de cada mes. Comprende la época lluviosa (julio-octubre) y la temporada seca (noviembre-abril). Se capturó un total de 1 501 individuos que representan 30 especies. La familia más abundante fue Cantharidae con 696 individuos, seguida de Lycidae con 561, Lampyridae con 166, Phengodidae con 66 y Telegeusidae con 12. La más rica en especies fue Lycidae con 12, seguida de Cantharidae con 11, Lampyridae con 3, Phengodidae con 3 y Telegeusidae con 1.
    [Show full text]
  • Coleoptera: Nitidulidae) De Coahuila, México
    Escarabajos de la savia (Coleoptera: Nitidulidae) de Coahuila, México. HERMELINDO HERNÁNDEZ TORRES TESIS PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN PARASITOLOGÍA AGRÍCOLA UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO Buenavista, Saltillo, Coahuila, México Marzo, 2013 i ii DEDICATORIA A DIOS TODOPODEROSO. Por ser mi padre y confidente y regalarme cada maravilloso día para cumplir cada uno de mis propósitos y por permitirme culminar con éxito el esfuerzo de estos años de estudio. Para Él mi agradecimiento infinito. iii A LA MEMORIA DE MI MADRE ANGELA HERNÀNDEZ CASTILLO Que desde el Cielo está conmigo y que siempre recordaré, amaré y llevaré en mi corazón. A mi familia: Pedro Hernández Reyes Mario Hernández Castillo Álvaro Hernández Castillo Adela Hernández Hernández Y el pequeño Michel. Por los agradables momentos que pasamos juntos. A La M.C. Ave María Hernández López por su compañía, amor y respeto. A LA UNIVERSIDAD Y A MIS CATEDRÁTICOS. Especialmente al Dr. Oswaldo García Martínez, con afecto, respeto y admiración. iv AGRADECIMIENTOS Agradezco a Dios por protegerme durante todo mi camino y darme fuerzas para superar obstáculos y dificultades a lo largo de toda mi vida. Al Dr. Oswaldo García Martínez. Primeramente por confiar en mí, por brindarme su apoyo incondicional en la realización de esta investigación y sus grandes enseñanzas recibidas. Gracias, Dios lo bendiga siempre. A la M.C. Ave María Hernández López. Gracias por estar a mi lado siempre, por tu apoyo incondicional y respeto. Al M.C. Víctor M. Sánchez V., M.C. Jorge Corrales R. y M.C. Sofía Comparan S.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]