Importance of Shallow-Water Biotopes of a Caribbean Bay for Juvenile Coral Reef Fishes: Patterns in Biotope Association, Community Structure and Spatial Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taverampe2018.Pdf
Molecular Phylogenetics and Evolution 121 (2018) 212–223 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogeny, divergence times, and a major role for the benthic-to- T pelagic axis in the diversification of grunts (Haemulidae) ⁎ Jose Taveraa,b, , Arturo Acero P.c, Peter C. Wainwrightb a Departamento de Biología, Universidad del Valle, Cali, Colombia b Department of Evolution and Ecology, University of California, Davis, CA 95616, United States c Instituto de Estudios en Ciencias del Mar, CECIMAR, Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia ARTICLE INFO ABSTRACT Keywords: We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the Percomorpharia role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were Fish performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation Functional traits indicates that Haemulidae originated during the mid Eocene (54.7–42.3 Ma) but that the major lineages were Morphospace formed during the mid-Oligocene 30–25 Ma. We propose a new classification that reflects the phylogenetic Macroevolution history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be Zooplanktivore strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology. -
CBD Strategy and Action Plan
http://www.wildlifetrust.org.uk/cumbria/importance%20of%20biodiversity.htm [Accessed 10th October, 2003]. Daiylpress (2002); Brown Tree frog; [on line]. Available on. www.vvdailypress.com/ living/biogeog [Accessed 13th December 2003]. FAO(2002); St. Kitts and Nevis Agricultural Diversification Project: Unpublished research presented to the Water Services Department. FloridaGardener (2002); Giant or marine Toad; [on line]. Available on. http://centralpets.com/pages/photopages/reptiles/frogs/ [Accessed 12th December 2003]. Friends of Guana River state park (2002); Racer snake; [on line] Available on. http://www.guanapark.org/ecology/fauna [Accessed 21st November, 2003]. GEF/UNDP(2000); Capacity Development Initiative; [online] Available on. http://www.gefweb.org/Documents/Enabling_Activity_Projects/CDI/LAC_Assessment.p df [Accessed 12th November, 2003]. Granger, M.A (1995) ; Agricultral Diversification Project : Land Use; Basseterre : Government of St.Kitts and Nevis. Guardianlife (2004);Leatherback turtle; [on line]. Available on. www.guardianlife.co.tt/glwildlife/ neckles.html [Accessed 15th May 2004] Harris, B(2001); Convention on Biological Diversity Country Study Report: Socio- economic issues; Basseterre, Government of St. Kitts and Nevis. Henry, C (2002); Civil Society & Citizenship; [on line]. Available on. http://www.la.utexas.edu/chenry/civil/archives95/csdiscuss/0006.html [Accessed 15th September 2003]. http://www.yale.edu/environment/publications/bulletin/101pdfs/101strong.pdf Heyliger, S (2001); Convention on Biological Diversity Country Study Report: Marine & Biodiversity; Government of St.Kitts and Nevis. Hilder, P (1989); The Birds of Nevis; Charlestown; Nevis Histroical and Conservation Society. Horwith, B & Lindsay, K(1999); A Biodiversity Profile of St. Kitts and Nevis; USVI; Island Resources Foundation. Imperial Valley College (2001); Spotted Sandpiper; [on line]. -
Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition. -
Five Years in Bacalar Chico Marine Reserve: an Evaluation of Reef Health and Reserve Effectiveness Between 2011-2015
REGISTERED CHARITY 1098893 Blue Ventures Conservation Report Five Years in Bacalar Chico Marine Reserve: an evaluation of reef health and reserve effectiveness between 2011-2015. Tyrell Reyes, Hannah Gilchrist, Olivia Lacasse, Friederike Peiffer, Henry Duffy & Alison Druskat December 2019 Blue Ventures, Level 2 Annex, Omnibus Business Centre, 39-41 North Road, London, N7 9DP, United Kingdom Tel: +44 (0)207 697 8598 Web: www.blueventures.org Email: [email protected] Blue Ventures Conservation Report © Blue Ventures 2019. Copyright in this publication and in all text, data and images contained herein, except as otherwise indicated, rests with Blue Ventures. Keywords: Belize, Bacalar Chico Marine Reserve, coral reef Authors: Tyrell Reyes, Hannah Gilchrist, Olivia Lacasse, Friederike Peiffer, Henry Duffy & Alison Druskat Contributors: Daniela Escontrela, Anna Simmons, Lucy Anderson, Andreina Acosta & Clara Sabal. Fieldwork supervised by: Jennifer Chapman (2011-2012), Nikkita Lawton (2011), Sarah Beach (2011-2013), Klavdija Jenko (2012-2013), Philippa Swannell (2013), Winnie Courtene-Jones (2013-2014), Me’ira Mizrahi (2014), Tom Nuttall-Smith (2014), Anouk Neuhaus (2015) & Daniela Escontrela (2015). Fieldwork conducted by: Volunteers and staff of Blue Ventures Expeditions, 2011-2015. Editors: Hannah Gilchrist, Jennifer Chapman, Charlotte Gough, Alison Druskat & Fabian Kyne Recommended citation: Reyes, T., Gilchrist, H., Lacasse, O., Peiffer, F., Duffy, H., and Druskat, A. 2019. Five years at Bacalar Chico Marine Reserve, an evaluation of reef health and reserve effectiveness. Blue Ventures Conservation Report, Blue Ventures, London. Acknowledgements: Blue Ventures would like to thank the Belize Fisheries Department for their on-going collaboration, in particular Henry Brown, the Fisheries Biologist for Bacalar Chico Marine Reserve throughout the period covered by this report. -
Experiential Training in Florida and the Florida Keys. a Pretrip Training Manual
DOCUMENT RESUME ED 341 547 SE 052 352 AUTHOR Baker, Claude D., Comp.; And Others TITLE Experiential Training in Florida and the Florida Keys. A Pretrip Training Manual. PUB DATE May 91 NOTE 82p.; For field trip guidelines, see ED 327 394. PUB TYPE Guides - Non-Classroom Use (055) -- Guides - Classroom Use - Teaching Guides (For Teacher)(052) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Animals; Classification; *Ecology; Environmental Education; Estuaries; *Field Trips; Higher Educatioa; Ichthyology; *Marine Biology; Plant Identification; Plants (Botany); *Resource Materials; Science Activities; Science Education; Secondary Education IDENTIFIERS Coral Reefs; Dichotomous Keys; *Florida ABSTRACT This document is a pretrip instruction manual that can be used by secondary school and college teachers who are planning trips to visit the tropical habitats in South Florida. The material is divided into two parts:(1) several fact sheets on the various habitats in South Florida; and (2) a number of species lists for various areas. Factsheets on the classification of marine environments, the zones of the seashore, estuaries, mangroves, seagrass meadows, salt marshes, and coral reefs are included. The species lists included algae, higher plants, sponges, worms, mollusks, bryozoans, arthropods, echinoderms, vertebrates,I insects, and other invertebrates. The scientific name, common name, and a brief description are supplied for all species. Activities on the behavior and social life of fish, a dichotomous key for seashells, and a section that lists -
What Controls Tropical Reef Fish Populations: Recruitment Or Benthic Mortality? an Example in the Caribbean Reef Fish Haemulon Flavolineatum
MARINE ECOLOGY - PROGRESS SERIES Vol. 39: 233-242, 1987 I Published September 10 Mar. Ecol. Prog. Ser. What controls tropical reef fish populations: recruitment or benthic mortality? An example in the Caribbean reef fish Haemulon flavolineatum M. J. Shulman*,J. C.Ogden West Indies Laboratory, Fairleigh Dickinson University, Teague Bay, Christiansted, St. Croix, U. S. Virgin Islands 00820, USA ABSTRACT. Recru~tmentfrom a planktonic larval stage has been proposed to be an important factor in lim~tingpopulations of marine organisms, part~cularlytroplcal reef fishes. We monitored recru~t~nent and populat~ondensities of juven~lesize classes In French grunt Haemulon flavolineatum (Haemulidae) from October 1978 through December 1980 In a portion of Tague Bay, St. Croix, U. S. Vlrgin Islands. Withln our study area, 95 % of new recrults settled onto the sand and seagrass lagoon floor and with~na few weeks migrated to nearby reefs; the remalnlng 5'10 settled d~rectlyonto reef structures. hIean annual recruitment rate was 1.8 recrults per m2 of lagoon floor, equivalent to 44 recruits per m2 of luvenlle (backreef)habitat per yr and among thc h~ghestrecruitment rates yet reported for reef fishes. Post-settlement mortality was also very high. dur~ngthe first month of benthic life it was 0.9 and during the first year was > 0.992. We propose a sens~t~vityanalysis criterion for determining the relative ~nfluenceof multiple factors or processes that llmit adult population slze The critenon we used is the relatlve senslt~vityof adult population size to -
A Genetic Analysis of the Intraspecific Relationships of Tropical Marine Shorefishes Common to Bermuda and the Southeastern Atla
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2003 A Genetic Analysis of the Intraspecific Relationships of rT opical Marine Shorefishes Common ot Bermuda and the Southeastern Atlantic Coast of the United States Kelly R. Johnson College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Genetics Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Johnson, Kelly R., "A Genetic Analysis of the Intraspecific Relationships of rT opical Marine Shorefishes Common to Bermuda and the Southeastern Atlantic Coast of the United States" (2003). Dissertations, Theses, and Masters Projects. Paper 1539617800. https://dx.doi.org/doi:10.25773/v5-kxv9-sv22 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A GENETIC ANALYSIS OF THE INTRASPECIFIC RELATIONSHIPS OF TROPICAL MARINE SHOREFISHES COMMON TO BERMUDA AND THE SOUTHEASTERN ATLANTIC COAST OF THE UNITED STATES A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Kelly R. Johnson 2003 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Ke: . Johnson Approved, December 2003 JofiQj>! Graves, Ph.D. -
Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas
NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault, Steven G. Smith, Geoffrey A. Meester, Jiangang Luo, James A. Bohnsack, and Steven L. Miller U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 August 2002 NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault 1, Steven G. Smith 1, Geoffrey A. Meester 1, Jiangang Luo 1, James A. Bohnsack 2 , and Steven L. Miller3 with significant contributions by Douglas E. Harper2, Dione W. Swanson3, Mark Chiappone3, Erik C. Franklin1, David B. McClellan2, Peter Fischel2, and Thomas W. Schmidt4 _____________________________ U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Conrad C. Lautenbacher, Jr., Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries August 2002 This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. 1 University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 2 NOAA/Fisheries Southeast Fisheries Science Center, Miami, FL 3 National Undersea Research Center, Key Largo, FL 4 National Park Service, Homestead, FL NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication. -
Changes in a Tropical Seagrass Environment After Installation of Small Artificial Reefs Joseph M
Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 4-1-2013 Changes in a Tropical Seagrass Environment After Installation of Small Artificial Reefs Joseph M. Penta Nova Southeastern University Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Joseph M. Penta. 2013. Changes in a Tropical Seagrass Environment After Installation of Small Artificial Reefs. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (157) https://nsuworks.nova.edu/occ_stuetd/157. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER Changes in a Tropical Seagrass Environment After Installation of Small Artificial Reefs By Joseph M. Penta Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University April 2013 Masters of Science: Marine Biology Thesis of Joseph M. Penta Submitted in Partial Fulfillment of the Requirements for the Degree of Nova Southeastern University Oceanographic Center April 2013 Approved: Thesis Committee Major Professor :______________________________ Michael Haley, Ph.D. Committee Member :___________________________ Richard E. Spieler, Ph.D. Committee Member :___________________________ David S. Gilliam, Ph.D. I. Abstract The 3-dimensional structural complexity of coral reef environments is positively correlated with measurements of biodiversity and biomass. -
Role of Mangroves As Nurseries for French Grunt Haemulon Flavolineatum and Schoolmaster Lutjanus Apodus Assessed by Otolith Elemental Fingerprints
Vol. 402: 197–212, 2010 MARINE ECOLOGY PROGRESS SERIES Published March 8 doi: 10.3354/meps08445 Mar Ecol Prog Ser Role of mangroves as nurseries for French grunt Haemulon flavolineatum and schoolmaster Lutjanus apodus assessed by otolith elemental fingerprints Ivan Mateo1,*, Edward G. Durbin2, Richard S. Appeldoorn3, Aaron J. Adams4, Francis Juanes5, Richard Kingsley2, Peter Swart6, Daisy Durant7 1Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 2Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, USA 3Department of Marine Sciences, University of Puerto Rico, Mayaguez, Puerto Rico 00681 4Mote Marine Laboratory, Pineland, Florida 33945, USA 5Department of Natural Resources Conservation, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, USA 6Division of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA 7Narragansett Bay Research Reserve, PO Box 151, Prudence Island, Rhode Island 02872, USA ABSTRACT: Juvenile French grunt Haemulon flavolineatum and schoolmaster Lutjanus apodus were captured in mangrove and seagrass stations in St. Croix, and Puerto Rico in 2006 and 2007 to deter- mine whether areas for juvenile fish can be discriminated by means of otolith chemistry. Concentra- tions of 16 elements were determined in 0-group fish otoliths using laser ablation-inductively coupled plasma mass spectrometry. Two stable isotopes, δ18O and δ13C, in French grunt and schoolmaster otoliths were also analyzed. Multi-elemental signatures for both species differed significantly (p < 0.001) among mangrove and seagrass stations within both islands. Furthermore, concentrations of 6 el- ements (Sr, Ba, Cu, Mg, Co, Na) as well as δ18O and δ13C for both species within each year differed sig- nificantly among mangrove and seagrass stations within islands (p < 0.001). -
Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016
Baseline Ecological Inventory for Three Bays National Park, Haiti OCTOBER 2016 Report for the Inter-American Development Bank (IDB) 1 To cite this report: Kramer, P, M Atis, S Schill, SM Williams, E Freid, G Moore, JC Martinez-Sanchez, F Benjamin, LS Cyprien, JR Alexis, R Grizzle, K Ward, K Marks, D Grenda (2016) Baseline Ecological Inventory for Three Bays National Park, Haiti. The Nature Conservancy: Report to the Inter-American Development Bank. Pp.1-180 Editors: Rumya Sundaram and Stacey Williams Cooperating Partners: Campus Roi Henri Christophe de Limonade Contributing Authors: Philip Kramer – Senior Scientist (Maxene Atis, Steve Schill) The Nature Conservancy Stacey Williams – Marine Invertebrates and Fish Institute for Socio-Ecological Research, Inc. Ken Marks – Marine Fish Atlantic and Gulf Rapid Reef Assessment (AGRRA) Dave Grenda – Marine Fish Tampa Bay Aquarium Ethan Freid – Terrestrial Vegetation Leon Levy Native Plant Preserve-Bahamas National Trust Gregg Moore – Mangroves and Wetlands University of New Hampshire Raymond Grizzle – Freshwater Fish and Invertebrates (Krystin Ward) University of New Hampshire Juan Carlos Martinez-Sanchez – Terrestrial Mammals, Birds, Reptiles and Amphibians (Françoise Benjamin, Landy Sabrina Cyprien, Jean Roudy Alexis) Vermont Center for Ecostudies 2 Acknowledgements This project was conducted in northeast Haiti, at Three Bays National Park, specifically in the coastal zones of three communes, Fort Liberté, Caracol, and Limonade, including Lagon aux Boeufs. Some government departments, agencies, local organizations and communities, and individuals contributed to the project through financial, intellectual, and logistical support. On behalf of TNC, we would like to express our sincere thanks to all of them. First, we would like to extend our gratitude to the Government of Haiti through the National Protected Areas Agency (ANAP) of the Ministry of Environment, and particularly Minister Dominique Pierre, Ministre Dieuseul Simon Desras, Mr. -
Ichthyological Survey on the Yucatan Coastal Corridor (Southern Gulf of Mexico)
Rev. Biodivers. Neotrop. ISSN 2027-8918 e-ISSN 2256-5426 Julio-Diciembre 2015; 5 (2): 145-55 145 DOI: 10.18636/bioneotropical.v5i2.167 Ichthyological survey on the Yucatan Coastal Corridor (Southern Gulf of Mexico) Evaluación ictiológica en el Corredor Costero de Yucatán (Sureste del Golfo de México) Sonia Palacios-Sánchez*, María Eugenia Vega-Cendejas*, Mirella Hernández* Abstract It is provided a systematic checklist of the ichthyofauna inhabiting the Yucatan coastal corridor, as part of the Mesoamerican Corridor which connects two of the most important reserves in Yucatan Peninsula Mexico: Celestun and Ria Lagartos. Fish specimens were collected bimonthly, from January 2002 to March 2004, in 24 localities along the coast (140 km). The systematic list includes 94 species belonging to 44 families and 19 orders. The best represented families by species number were Sciaenidae (10), Carangidae (9) and Engraulidae (5). Information about size range, number of specimen per species and zoogeographic affinities are included. The species with the highest occurrence (100%) were Harengula jaguana and Trachinotus falcatus. It is confirmed the presence ofRypticus maculatus (Serranidae) in the southern Gulf of Mexico and of three brackish species into the marine environment. Keywords: Biodiversity, Coastal fishes, Gulf of Mexico, Ichthyofauna, Yucatan. Resumen Se presenta un listado sistemático de la ictiofauna que habita el corredor costero de Yucatán, el cual forma parte del Corredor Mesoamericano que conecta dos de las reservas más importantes en la Península de Yucatán (México): Celestún y Ría Lagartos. Los especímenes se colectaron bimensualmente entre enero 2002 a marzo 2004 en 24 sitios a lo largo de los 300 km de costa.