SYMPLECTIC SINGULARITIES and THEIR QUANTIZATIONS Contents Introduction I 1. Symplectic Singularities and Symplectic Resolutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higher Dimensional Algebraic Geometry March 12–16, 2018, University of Tokyo
Higher dimensional algebraic geometry March 12{16, 2018, University of Tokyo This conference is supported by JSPS KAKENHI Grants: 16H02141 (Kawamata) and 15H03611 (Oguiso). Organizers Yoshinori Gongyo (University of Tokyo) Keiji Oguiso (University of Tokyo) Shunsuke Takagi (University of Tokyo) Schedule Mar. 12 Mar. 13 Mar. 14 Mar. 15 Mar. 16 10:00{ Yukinobu Jungkai Yongnam Nobuyoshi Taro 10:50 Toda Chen Lee Takahashi Sano 11:10{ Takehiko Chen Fabrizio Yasunari Kenji 12:00 Yasuda Jiang Catanese Nagai Matsuki 14:00{ Paolo Yusuke Yoshinori Shinnosuke free 14:50 Cascini Nakamura Namikawa Okawa afternoon 15:10{ Masayuki Atsushi Akira Hokuto free 16:00 Kawakita Ito Ishii Uehara afternoon 16:20{ Caucher Jun-Muk Yukari Hiromichi free 17:10 Birkar Hwang Ito Takagi afternoon 18:00{ Reception 20:00 Titles and Abstracts Caucher Birkar (University of Cambridge) Title: Some problems about singularities Abstract: In this talk, I will discuss some problems about singularities. The aim would be to understand the relation between positivity properties of di- visors on the one hand and their singularities on the other. Paolo Cascini (Imperial College London) Title: Minimal Model Program for foliations Abstract: I will survey some recent results on the study of the birational geometry of foliations over complex projective varieties. Work in progress with C. Spicer. Fabrizio Catanese (Universit¨atBayreuth) Title: Canonical surfaces of high degree and low genus Abstract: Let Y be the image of a surface S under the canonical map, and assume that Y is a surface. The degree d of Y is called canonical degree, and d is bounded by the canonical volume K2. -
On Crepant Resolutions of 2-Parameter Series of Gorenstein Cyclic Quotient Singularities
On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities Dimitrios I. Dais, Utz-Uwe Haus and Martin Henk Abstract An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces Cr/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desin- gularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and sufficient conditions under which 2-parameter series of Gorenstein cyclic quotient singularities have torus-equivariant resolutions of this specific sort in all dimensions. 1. Introduction Let Y be a Calabi-Yau threefold and G a finite group of analytic automorphisms of Y , such that for all h h isotropy groups Gy, y Y , we have Gy SL Ty (Y ) , where Ty (Y ) denotes the holomorphic tangent space of Y at y. In the∈ framework of⊂ the study of the “index” of the physical orbifold theory [11] Dixon, Harvey, Vafa and Witten introduced for the orbit-space Y/G a “stringy” analogue χstr (Y, G) of the Euler-Poincar´echaracteristic. Working out some concrete examples, they verified that χstr (Y, G) is equal to the usual Euler-Poincar´echaracteristic χ (W ) of a new Calabi-Yau threefold W , which is nothing but the overlying space of a projective desingularization f : W Y/G of Y/G, as long as f does not affect the triviality of the dualizing sheaf (in other words, f preserves→ the “holomorphic volume form” or is “crepant”). -
Resolutions of Quotient Singularities and Their Cox Rings Phd Dissertation
University of Warsaw Faculty of Mathematics, Informatics and Mechanics Maksymilian Grab Resolutions of quotient singularities and their Cox rings PhD dissertation Supervisor prof. dr hab. Jaros law Wi´sniewski Institute of Mathematics University of Warsaw Auxiliary Supervisor dr Maria Donten-Bury Institute of Mathematics University of Warsaw Author's declaration: I hereby declare that I have written this dissertation myself and all the contents of the dissertation have been obtained by legal means. March 11, 2019 ................................................... Maksymilian Grab Supervisors' declaration: The dissertation is ready to be reviewed. March 11, 2019 ................................................... prof. dr hab. Jaros law Wi´sniewski March 11, 2019 ................................................... dr Maria Donten-Bury ABSTRACT 3 Abstract The aim of this dissertation is to investigate the geometry of resolutions of quotient sin- n gularities C =G for G ⊂ SLn(C) with use of an associated algebraic object { the Cox ring. We are interested in the construction of all crepant resolutions and a combinatorial description of birational relations among them. This information can be read off from the structure of the Cox ring. We give a method to construct certain finitely generated subalgebras of the Cox ring R(X) n of a crepant resolution X ! C =G and present three methods to verify when such a subring is actually the whole Cox ring. The construction relies on the embedding, investigated by Donten-Bury and Wi´sniewski, of the Cox ring into the Laurent polynomial ring over an invariant ring of the commutator subgroup [G; G] ⊂ G. The first method to verify whether a constructed subalgebra is equal to R(X) relies on a n criterion involving valuations of crepant divisors over the singularity C =G. -
The Du Val Singularities An,Dn,E6,E7,E8
The Du Val singularities An;Dn;E6;E7;E8 Miles Reid Introduction Du Val singularities have been studied since antiquity, and there are any number of ways of characterising them (compare Durfee [D]). They ap- pear throughout the classification of surfaces, and in many other areas of geometry, algebraic geometry, singularity theory and group theory. For my present purpose, they make a wonderful introduction to many of the tech- niques and calculations of surface theory: blowups and birational geometry, intersection numbers, canonical class, first ideas in coherent cohomology, etc. This chapter proposes a number of activities with Du Val singularities, and leaves many of them as enjoyable exercises for the reader. Have fun! The ideas in this section have many applications and generalisations, including the more complicated classes of surface singularities discussed in [Part I], Chapter 4, and also the terminal and flip singularities of Mori theory of 3-folds; see [YPG] for some of these ideas. Summary 1. Examples: the ordinary double point and how it arises, the remaining Du Val singularities An, Dn, E6, E7, E8 and their resolutions. 2. Quotient singularities X = C2=G and covers π : Y X. ! 3. Some characterisations: Du Val singularities \do not affect adjunc- tion" 4. Canonical class: a Du Val singularity P X has a resolution f : Y 2 ! X with KY = f ∗KX . 5. Numerical cycle and multiplicity; there is a unique 2-cycle 0 = Znum, called the numerical cycle of P X, characterised− as the minimal6 2 nonzero divisor with ZnumΓ 0 for every exceptional curve Γ. In ≤ simple cases, properties of P X can be expressed in terms of Znum. -
RESOLVING 3-DIMENSIONAL TORIC SINGULARITIES by Dimitrios I. Dais
S´eminaires & Congr`es 6, 2002, p. 155–186 RESOLVING 3-DIMENSIONAL TORIC SINGULARITIES by Dimitrios I. Dais Abstract.—This paper surveys, in the first place, some basic facts from the classifica- tion theory of normal complex singularities, including details for the low dimensions 2 and 3. Next, it describes how the toric singularities are located within the class of rational singularities, and recalls their main properties. Finally, it focuses, in particular, on a toric version of Reid’s desingularization strategy in dimension three. 1. Introduction There are certain general qualitative criteria available for the rough classification of singularities of complex varieties. The main ones arise: • from the study of the punctual algebraic behaviour of these varieties (w.r.t. local rings associated to singular points) [algebraic classification] • from an intrinsic characterization for the nature of the possible exceptional loci w.r.t. any desingularization [rational, elliptic, non-elliptic etc.] • from the behaviour of “discrepancies” Q (for -Gorenstein normal complex varieties) [adjunction-theoretic classification] 2000 Mathematics Subject Classification.—14M25; 14B05, 32S05. Key words and phrases.—Canonical singularities, toric singularities. c S´eminaires et Congr`es 6, SMF 2002 156 D.I. DAIS Algebraic Classification. — At first we recall some fundamental definitions from commutative algebra (cf. [52],[54]). Let R be a commutative ring with 1. The height ht(p) of a prime ideal p of R is the supremum of the lengths of all prime ideal chains which are contained in p,andthedimension of R is defined to be dim (R):=sup{ht (p) | p prime ideal of R} . R is Noetherian if any ideal of it has a finite system of generators. -
Flips for 3-Folds and 4-Folds
Flips for 3-folds and 4-folds Florin Ambro Res. Inst. Math. Sci., Kyoto University Kyoto 606-8502, Japan Alessio Corti Department of Mathematics, Imperial College London Huxley Building, 180 Queen’s Gate London SW7 2AZ, UK Osamu Fujino Grad. School of Math., Nagoya University Chikusa-ku, Nagoya 464-8602, Japan Christopher D. Hacon Department of Mathematics, University of Utah 155 South 1400 East Salt Lake City UT 84112-0090, USA J´anos Koll´ar Department of Mathematics, Princeton University Fine Hall, Washington Road Princeton NJ 08544-1000, USA James McKernan Department of Mathematics, UC Santa Barbara Santa Barbara CA 93106, USA Hiromichi Takagi Grad. School of Math. Sci., The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153–8914, Japan Contents Chapter 1. Introduction Alessio Corti 1 1.1. Minimal models of surfaces 1 1.2. Higher dimensions and flips 1 1.3. The work of Shokurov 2 1.4. Minimal models of 3-folds and 4-folds 2 1.5. The aim of this book 3 1.6. Pl flips 3 1.7. b-divisors 4 1.8. Restriction and mobile b-divisors. 5 1.9. Pbd-algebras 5 1.10. Restricted systems and 3-fold pl flips 6 1.11. Shokurov’s finite generation conjecture 6 1.12. What is log terminal? 7 1.13. Special termination and reduction to pl flips. 8 1.14. The work of Hacon and McKernan: adjoint algebras 8 1.15. Mobile b-divisors on weak klt del Pezzo surfaces 9 1.16. The CCS Conjecture 9 1.17. Kodaira’s canonical bundle formula and subadjunction 10 1.18. -
Crepant Resolutions of Q-Factorial Threefolds with Compound Du Val Singularities
Crepant resolutions of Q-factorial threefolds with compound Du Val singularities An honors thesis presented by Ravi Jagadeesan to The Department of Mathematics in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors in the subject of Mathematics Harvard University Cambridge, Massachusetts March 2018 Thesis advisors: Professors Mboyo Esole and Shing-Tung Yau Abstract We study the set of crepant resolutions of Q-factorial threefolds with compound Du Val singularities. We derive sufficient conditions for the Kawamata–Koll´ar{Mori{ Reid decomposition of the relative movable cone into relative ample cones to be the decomposition of a cone into chambers for a hyperplane arrangement. Under our sufficient conditions, the hyperplane arrangement can be determined by computing intersection products between exceptional curves and divisors on any single crepant resolution. We illustrate our results by considering the Weierstrass models of elliptic fibrations arising from Miranda collisions with non-Kodaira fibers. Many of our results extend to the set of crepant partial resolutions with Q-factorial terminal singularities. ii Acknowledgements First and foremost, I would like to thank my advisors|Professors Mboyo Esole and Shing-Tung Yau|for their incredibly helpful guidance throughout the course of this project. Their insights and support were truly essential to the genesis, development, and completion of this thesis. I appreciate the helpful comments and feedback of Monica Kang, Professor Kenji Matsuki, and David Yang on aspects of this thesis. I would also like to thank my other advisors|Professors John Geanakoplos, Scott Kominers, Natesh Pillai, and Stefanie Stantcheva|for their advice and support throughout my undergraduate years.