Flips for 3-Folds and 4-Folds

Total Page:16

File Type:pdf, Size:1020Kb

Flips for 3-Folds and 4-Folds Flips for 3-folds and 4-folds Florin Ambro Res. Inst. Math. Sci., Kyoto University Kyoto 606-8502, Japan Alessio Corti Department of Mathematics, Imperial College London Huxley Building, 180 Queen’s Gate London SW7 2AZ, UK Osamu Fujino Grad. School of Math., Nagoya University Chikusa-ku, Nagoya 464-8602, Japan Christopher D. Hacon Department of Mathematics, University of Utah 155 South 1400 East Salt Lake City UT 84112-0090, USA J´anos Koll´ar Department of Mathematics, Princeton University Fine Hall, Washington Road Princeton NJ 08544-1000, USA James McKernan Department of Mathematics, UC Santa Barbara Santa Barbara CA 93106, USA Hiromichi Takagi Grad. School of Math. Sci., The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153–8914, Japan Contents Chapter 1. Introduction Alessio Corti 1 1.1. Minimal models of surfaces 1 1.2. Higher dimensions and flips 1 1.3. The work of Shokurov 2 1.4. Minimal models of 3-folds and 4-folds 2 1.5. The aim of this book 3 1.6. Pl flips 3 1.7. b-divisors 4 1.8. Restriction and mobile b-divisors. 5 1.9. Pbd-algebras 5 1.10. Restricted systems and 3-fold pl flips 6 1.11. Shokurov’s finite generation conjecture 6 1.12. What is log terminal? 7 1.13. Special termination and reduction to pl flips. 8 1.14. The work of Hacon and McKernan: adjoint algebras 8 1.15. Mobile b-divisors on weak klt del Pezzo surfaces 9 1.16. The CCS Conjecture 9 1.17. Kodaira’s canonical bundle formula and subadjunction 10 1.18. Finite generation on non-klt surfaces 10 1.19. The glossary 10 1.20. The book as a whole 10 1.21. Prerequisites 11 1.22. Acknowledgements 11 Chapter 2. 3-fold flips after Shokurov Alessio Corti 13 2.1. Introduction 13 2.1.1. Statement and brief history of the problem 13 2.1.2. Summary of the chapter 14 2.1.3. Other surveys 14 2.2. Background 14 2.2.1. Summary 15 2.2.2. Discrepancy 15 2.2.3. Klt and plt 16 2.2.4. Inversion of adjunction 17 2.2.5. The flipping conjecture 17 2.2.6. Reduction to pl flips 18 2.2.7. Plan of the proof 19 iii iv CONTENTS 2.2.8. Log resolution 19 2.3. The language of function algebras and b-divisors 20 2.3.1. Function algebras 20 2.3.2. b-divisors 21 2.3.3. Saturated divisors and b-divisors 24 2.3.4. Mobile b-divisors 26 2.3.5. Restriction and saturation 28 2.3.6. Pbd-algebras: terminology and first properties 29 2.3.7. The limiting criterion 30 2.3.8. Function algebras and pbd-algebras 31 2.3.9. The finite generation conjecture 32 2.3.10. A Shokurov algebra on a curve is finitely generated 33 2.4. Finite generation on surfaces and existence of 3-fold flips 34 2.4.1. The finite generation conjecture implies existence of pl flips 34 2.4.2. Linear systems on surfaces 35 2.4.3. The finite generation conjecture on surfaces 37 2.5. Acknowledgements 40 Chapter 3. What is log terminal? Osamu Fujino 41 3.1. What is log terminal? 41 3.2. Preliminaries on Q-divisors 42 3.3. Singularities of pairs 43 3.4. Divisorially log terminal 44 3.5. Resolution lemma 45 3.6. Whitney umbrella 46 3.7. What is a log resolution? 48 3.8. Examples 49 3.9. Adjunction for dlt pairs 50 3.10. Miscellaneous comments 52 3.11. Acknowledgements 53 Chapter 4. Special termination and reduction to pl flips Osamu Fujino 55 4.1. Introduction 55 4.2. Special termination 56 4.3. Reduction theorem 60 4.4. A remark on the log MMP 63 4.5. Acknowledgements 65 Chapter 5. Extension theorems and the existence of flips Christopher Hacon and James McKernan 67 5.1. Introduction 67 5.1.1. The conjectures of the MMP 67 5.1.2. Previous results 69 5.1.3. Sketch of the proof 69 5.1.4. Notation and conventions 72 5.2. The real minimal model program 74 5.3. Finite generation 77 CONTENTS v 5.3.1. Generalities on Finite generation 77 5.3.2. Adjoint Algebras 79 5.4. Multiplier ideal sheaves and extension results 80 5.4.1. Definition and first properties of multiplier ideal sheaves 80 5.4.2. Extending Sections 84 5.4.3. The Restricted Algebra is an Adjoint Algebra 91 5.5. Acknowledgements 95 Chapter 6. Saturated mobile b-divisors on weak del Pezzo klt surfaces Alessio Corti, James McKernan and Hiromichi Takagi 97 6.1. Introduction 97 6.2. Example 98 6.3. Preliminaries 99 6.4. Mobile b-divisors of Iitaka dimension one 101 Chapter 7. Confined divisors James McKernan 105 7.1. Introduction 105 7.2. Diophantine Approximation and Descent 106 7.3. Confined b-divisors 107 7.4. The CCS conjecture 109 7.5. The surface case 111 7.6. A strategy for the general case 112 7.7. Acknowledgements 115 Chapter 8. Kodaira’s canonical bundle formula and subadjunction Janos´ Kollar´ 117 8.1. Introduction 117 8.2. Fujita’s canonical bundle formula 118 8.3. The general canonical bundle formula 120 8.4. Fiber spaces of log Kodaira dimension 0 124 8.5. Kawamata’s canonical bundle formula 129 8.6. Subadjunction 131 8.7. Log canonical purity 133 8.8. Ambro’s seminormality theorem 134 8.9. Covering tricks and Semipositivity of f∗ωX/Y 136 8.10. Log Fano varieties 140 8.11. Acknowledgements 141 Chapter 9. Non-klt techniques Florin Ambro 143 9.1. Introduction 143 9.2. Preliminary 143 9.2.1. Codimension one adjunction 143 9.2.2. The discriminant of a log pair 144 9.3. Non-klt FGA 146 Chapter 10. Glossary Alessio Corti 151 vi CONTENTS Bibliography 161 Index 165 CHAPTER 1 Introduction Alessio Corti 1.1. Minimal models of surfaces In this book, we generalise the following theorem to 3-folds and 4-folds: Theorem 1.1.1 (Minimal model theorem for surfaces). Let X be a nonsingular projective surface. There is a birational morphism f : X → X0 to a nonsingular projective surface X0 satisfying one of the following conditions: 0 X is a minimal model: KX0 is nef, that is KX0 · C ≥ 0 for every curve C ⊂ X0; or X0 is a Mori fibre space: X0 =∼ P2 or X0 is a P1-bundle over a nonsingu- lar curve T . This result is well known; the classical proof runs more or less as follows. If X does not satisfy the conclusion, then X contains a −1-curve, that is, a nonsingular 2 rational curve E ⊂ X such that KX · E = E = −1. By the Castelnuovo con- tractibility theorem, a −1-curve can always be contracted: there exists a morphism f : E ⊂ X → P ∈ X1 which maps E ⊂ X to a nonsingular point P ∈ X1 and restricts to an isomorphism X r E → X1 r {P }. Viewed from P ∈ X1, this is just the blow up of P ∈ X1. Either X1 satisfies the conclusion, or we can continue contracting a −1-curve in X1. Every time we contract a −1-curve, we decrease the rank of the N´eron-Severi group; hence the process must terminate (stop). 1.2. Higher dimensions and flips The conceptual framework generalising this result to higher dimensions is the well known Mori program or Minimal Model Program. The higher dimensional analog f : X → X1 of the contraction of a −1-curve is an extremal divisorial con- traction. Even if we start with X nonsingular, X1 can be singular. This is not a problem: we now know how to handle the relevant classes of singularities, for exam- ple the class of terminal singularities. The problem is that, in higher dimensions, we meet a new type of contraction: Definition 1.2.1. A small contraction is a birational morphism f : X → Z with connected fibres such the exceptional set C ⊂ X is of codimension codimX C ≥ 2. When we meet a small contraction f : X → Z, the singularities on Z are so bad that the canonical class of Z does not even have a Chern class in H2(Z, Q): it does not make sense to form the intersection number KZ · C with algebraic curves C ⊂ Z. We need a new type of operation, called a flip: 1 2 1. INTRODUCTION Definition 1.2.2. A small contraction f : X → Z is a flipping contraction if KX is anti-ample along the fibres of f. The flip of f is a new small contraction 0 0 0 f : X → Z such that KX0 is ample along the fibres of f It is conjectured that flips exist and that every sequence of flips terminates (that is, there exists no infinite sequence of flips). 1.3. The work of Shokurov Mori [Mor88] first proved that flips exist if X is 3-dimensional. It was known (and, in any case, it is easy to prove) that 3-fold flips terminate, thus Mori’s theorem implied the minimal model theorem in dimension 3. Recently, Shokurov [Sho03] completed in dimension ≤ 4 a program to con- struct flips started in [Sho92, FA92]. In fact, Shokurov shows that a more general type of flip exists. We consider perturbations of the canonical class KX of the P form KX + biBi, where Bi ⊂ X are prime divisors and 0 ≤ bi < 1. For the P program to work, the pair X, biBi needs to have klt singularities.
Recommended publications
  • Arxiv:1701.01653V1 [Math.CV] 6 Jan 2017 32J25
    Bimeromorphic geometry of K¨ahler threefolds Andreas H¨oring and Thomas Peternell Abstract. We describe the recently established minimal model program for (non-algebraic) K¨ahler threefolds as well as the abundance theorem for these spaces. 1. Introduction Given a complex projective manifold X, the Minimal Model Program (MMP) predicts that either X is covered by rational curves (X is uniruled) or X has a ′ - slightly singular - birational minimal model X whose canonical divisor KX′ is nef; and then the abundance conjecture says that some multiple mKX′ is spanned by global sections (so X′ is a good minimal model). The MMP also predicts how to achieve the birational model, namely by a sequence of divisorial contractions and flips. In dimension three, the MMP is completely established (cf. [Kwc92], [KM98] for surveys), in dimension four, the existence of minimal models is es- tablished ([BCHM10], [Fuj04], [Fuj05]), but abundance is wide open. In higher dimensions minimal models exists if X is of general type [BCHM10]; abundance not being an issue in this case. In this article we discuss the following natural Question 1.1. Does the MMP work for general (non-algebraic) compact K¨ahler manifolds? Although the basic methods used in minimal model theory all fail in the K¨ahler arXiv:1701.01653v1 [math.CV] 6 Jan 2017 case, there is no apparent reason why the MMP should not hold in the K¨ahler category. And in fact, in recent papers [HP16], [HP15] and [CHP16], the K¨ahler MMP was established in dimension three: Theorem 1.2. Let X be a normal Q-factorial compact K¨ahler threefold with terminal singularities.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Mori Dream Spaces and Birational Rigidity of Fano 3-Folds
    Ahmadinezhad, H., & Zucconi, F. (2016). Mori dream spaces and birational rigidity of Fano 3-folds. Advances in Mathematics, 292, 410- 445. https://doi.org/10.1016/j.aim.2016.01.008 Peer reviewed version Link to published version (if available): 10.1016/j.aim.2016.01.008 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ MORI DREAM SPACES AND BIRATIONAL RIGIDITY OF FANO 3-FOLDS HAMID AHMADINEZHAD AND FRANCESCO ZUCCONI Abstract. We highlight a relation between the existence of Sarkisov links and the finite generation of (certain) Cox rings. We introduce explicit methods to use this relation in order to prove birational rigidity statements. To illustrate, we complete the birational rigidity results of Okada for Fano complete intersection 3-folds in singular weighted projective spaces. 1. Introduction Rationality question for varieties covered by rational curves (e.g. unirational varieties) has been a fundamental problem in algebraic geometry, the answer to which has opened various subjects across the field. The first examples of unirational varieties that are irrational were found about the same time by Clemens and Griffiths [10], Iskovskikh and Manin [18], Artin and Mumford [3]. While the results of [10] and [3] indicate that the varieties under study (respectively, a smooth cubic 3-fold and some special singular quartic 3-folds in the weighted projective space P(1; 1; 1; 1; 2)) are irrational, the result in [18] shows that a smooth quartic 3-fold is not birational to any conic bundle or fibration into del 3 Pezzo surfaces, or any other Fano variety, including P , that is to say it is irrational in a strong sense.
    [Show full text]
  • 2008 Award for Distinguished Public Service
    2008 Award for Distinguished Public Service The 2008 Award for Distinguished and continuation of the Park City/IAS Mathemat- Public Service was presented at the ics Institute. 114th Annual Meeting of the AMS in San Diego in January 2008. Biographical Sketch The Award for Distinguished Public Herbert Clemens earned his Ph.D. in 1966 from Service is presented every two years the University of California, Berkeley, under the to a research mathematician who has direction of Phillip A. Griffiths. He has taught at made a distinguished contribution to Columbia University, the University of Utah, and the mathematics profession during the preceding five years. The purpose of the Ohio State University, where he has been on the award is to encourage and recog- the faculty since 2002. He has served as director nize those individuals who contribute of the NSF Regional Geometry Institute, Park City, their time to public service activities UT, and chair of the Steering Committee for the IAS in support of mathematics. The award Park City Mathematics Institute. He was an invited Herbert Clemens carries a cash prize of US$4,000. speaker at the International Congress of Mathema- The Award for Distinguished Public ticians in 1974 and in 1986. His academic honors Service is made by the AMS Council include a Silver Medal from the Italian Mathemati- acting on the recommendation of a selection com- cal Society and a Laurea de honoris causa from the mittee. For the 2008 award the members of the Universita di Torino, among others. His research selection committee were: William J. Lewis, Carolyn R.
    [Show full text]
  • Arxiv:1407.7478V1 [Math.AG]
    THE STRUCTURE OF ALGEBRAIC VARIETIES JANOS´ KOLLAR´ Abstract. The aim of this address is to give an overview of the main questions and results of the structure theory of higher dimensional algebraic varieties. 1. Early history: Euler, Abel, Jacobi, Riemann Our story, like many others in mathematics, can be traced back at least to Euler who studied elliptic integrals of the form dx . Z √x3 + ax2 + bx + c The study of integrals of algebraic functions was further developed by Abel and Jacobi. From our point of view the next major step was taken by Riemann. Instead of dealing with a multi-valued function like √x3 + ax2 + bx + c, Riemann looks at the complex algebraic curve C := (x, y): y2 = x3 + ax2 + bx + c C2. ⊂ Then the above integral becomes dx ZΓ y for some path Γ on the algebraic curve C. More generally, a polynomial g(x, y) implicitly defines y := y(x) as a multi-valued function of x and for any meromorphic function h(u, v), the multi-valued integral h x, y(x) dx Z becomes a single valued integral arXiv:1407.7478v1 [math.AG] 28 Jul 2014 h x, y dx Z Γ for some path Γ on the algebraic curve C(g) := g(x, y)=0 C2. Substitutions ⊂ that transform one integral associated to a polynomial g1 into another integral associated to a g2 can be now seen as algebraic maps between the curves C(g1) and C(g2). Riemann also went further. As a simple example, consider the curve C defined by (y2 = x3 + x2) and notice that (t3 t)2 (t2 1)3 + (t2 1)2.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Cox Rings and Partial Amplitude Permalink https://escholarship.org/uc/item/7bs989g2 Author Brown, Morgan Veljko Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Cox Rings and Partial Amplitude by Morgan Veljko Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, BERKELEY Committee in charge: Professor David Eisenbud, Chair Professor Martin Olsson Professor Alistair Sinclair Spring 2012 Cox Rings and Partial Amplitude Copyright 2012 by Morgan Veljko Brown 1 Abstract Cox Rings and Partial Amplitude by Morgan Veljko Brown Doctor of Philosophy in Mathematics University of California, BERKELEY Professor David Eisenbud, Chair In algebraic geometry, we often study algebraic varieties by looking at their codimension one subvarieties, or divisors. In this thesis we explore the relationship between the global geometry of a variety X over C and the algebraic, geometric, and cohomological properties of divisors on X. Chapter 1 provides background for the results proved later in this thesis. There we give an introduction to divisors and their role in modern birational geometry, culminating in a brief overview of the minimal model program. In chapter 2 we explore criteria for Totaro's notion of q-amplitude. A line bundle L on X is q-ample if for every coherent sheaf F on X, there exists an integer m0 such that m ≥ m0 implies Hi(X; F ⊗ O(mL)) = 0 for i > q.
    [Show full text]
  • Effective Bounds for the Number of MMP-Series of a Smooth Threefold
    EFFECTIVE BOUNDS FOR THE NUMBER OF MMP-SERIES OF A SMOOTH THREEFOLD DILETTA MARTINELLI Abstract. We prove that the number of MMP-series of a smooth projective threefold of positive Kodaira dimension and of Picard number equal to three is at most two. 1. Introduction Establishing the existence of minimal models is one of the first steps towards the birational classification of smooth projective varieties. More- over, starting from dimension three, minimal models are known to be non-unique, leading to some natural questions such as: does a variety admit a finite number of minimal models? And if yes, can we fix some parameters to bound this number? We have to be specific in defining what we mean with minimal mod- els and how we count their number. A marked minimal model of a variety X is a pair (Y,φ), where φ: X 99K Y is a birational map and Y is a minimal model. The number of marked minimal models, up to isomorphism, for a variety of general type is finite [BCHM10, KM87]. When X is not of general type, this is no longer true, [Rei83, Example 6.8]. It is, however, conjectured that the number of minimal models up to isomorphism is always finite and the conjecture is known in the case of threefolds of positive Kodaira dimension [Kaw97]. In [MST16] it is proved that it is possible to bound the number of marked minimal models of a smooth variety of general type in terms of the canonical volume. Moreover, in dimension three Cascini and Tasin [CT18] bounded the volume using the Betti numbers.
    [Show full text]
  • Party Time for Mathematicians in Heidelberg
    Mathematical Communities Marjorie Senechal, Editor eidelberg, one of Germany’s ancient places of Party Time HHlearning, is making a new bid for fame with the Heidelberg Laureate Forum (HLF). Each year, two hundred young researchers from all over the world—one for Mathematicians hundred mathematicians and one hundred computer scientists—are selected by application to attend the one- week event, which is usually held in September. The young in Heidelberg scientists attend lectures by preeminent scholars, all of whom are laureates of the Abel Prize (awarded by the OSMO PEKONEN Norwegian Academy of Science and Letters), the Fields Medal (awarded by the International Mathematical Union), the Nevanlinna Prize (awarded by the International Math- ematical Union and the University of Helsinki, Finland), or the Computing Prize and the Turing Prize (both awarded This column is a forum for discussion of mathematical by the Association for Computing Machinery). communities throughout the world, and through all In 2018, for instance, the following eminences appeared as lecturers at the sixth HLF, which I attended as a science time. Our definition of ‘‘mathematical community’’ is journalist: Sir Michael Atiyah and Gregory Margulis (both Abel laureates and Fields medalists); the Abel laureate the broadest: ‘‘schools’’ of mathematics, circles of Srinivasa S. R. Varadhan; the Fields medalists Caucher Bir- kar, Gerd Faltings, Alessio Figalli, Shigefumi Mori, Bào correspondence, mathematical societies, student Chaˆu Ngoˆ, Wendelin Werner, and Efim Zelmanov; Robert organizations, extracurricular educational activities Endre Tarjan and Leslie G. Valiant (who are both Nevan- linna and Turing laureates); the Nevanlinna laureate (math camps, math museums, math clubs), and more.
    [Show full text]
  • Resolutions of Quotient Singularities and Their Cox Rings Extended Abstract
    RESOLUTIONS OF QUOTIENT SINGULARITIES AND THEIR COX RINGS EXTENDED ABSTRACT MAKSYMILIAN GRAB The resolution of singularities allows one to modify an algebraic variety to obtain a nonsingular variety sharing many properties with the original, singular one. The study of nonsingular varieties is an easier task, due to their good geometric and topological properties. By the theorem of Hironaka [29] it is always possible to resolve singularities of a complex algebraic variety. The dissertation is concerned with resolutions of quotient singularities over the field C of complex numbers. Quotient singularities are the singularities occuring in quotients of algebraic varieties by finite group actions. A good local model of such a singularity n is a quotient C /G of an affine space by a linear action of a finite group. The study of quotient singularities dates back to the work of Hilbert and Noether [28], [40], who proved finite generation of the ring of invariants of a linear finite group action on a ring of polynomials. Other important classical result is due to Chevalley, Shephard and Todd [10], [46], who characterized groups G that yield non-singular quotients. Nowa- days, quotient singularities form an important class of singularities, since they are in some sense typical well-behaved (log terminal) singularities in dimensions two and three (see [35, Sect. 3.2]). Methods of construction of algebraic varieties via quotients, such as the classical Kummer construction, are being developed and used in various contexts, including higher dimensions, see [1] and [20] for a recent example of application. In the well-studied case of surfaces every quotient singularity admits a unique minimal resolution.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • The Birational Geometry of Tropical Compactifications
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 The Birational Geometry of Tropical Compactifications Colin Diemer University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Algebraic Geometry Commons Recommended Citation Diemer, Colin, "The Birational Geometry of Tropical Compactifications" (2010). Publicly Accessible Penn Dissertations. 96. https://repository.upenn.edu/edissertations/96 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/96 For more information, please contact [email protected]. The Birational Geometry of Tropical Compactifications Abstract We study compactifications of subvarieties of algebraic tori using methods from the still developing subject of tropical geometry. Associated to each ``tropical" compactification is a polyhedral object called a tropical fan. Techniques developed by Hacking, Keel, and Tevelev relate the polyhedral geometry of the tropical variety to the algebraic geometry of the compactification. eW compare these constructions to similar classical constructions. The main results of this thesis involve the application of methods from logarithmic geometry in the sense of Iitaka \cite{iitaka} to these compactifications. eW derive a precise formula for the log Kodaira dimension and log irregularity in terms of polyhedral geometry. We then develop a geometrically motivated theory of tropical morphisms and discuss the induced map on tropical fans. Tropical fans with similar structure in this sense are studied, and we show that certain natural operations on a tropical fan correspond to log flops in the sense of birational geometry. These log flops are then studied via the theory of secondary polytopes developed by Gelfand, Kapranov, and Zelevinsky to obtain polyhedral analogues of some results from logarithmic Mori theory.
    [Show full text]
  • INSTITUTO DE CIENCIAS MATEMÁTICAS Quarterly Newsletter Second Quarter 2015 CONTENTS
    INSTITUTO DE CIENCIAS MATEMÁTICAS Quarterly newsletter Second quarter 2015 CONTENTS Editorial: Looking to Europe..............................................................................3 Interview: Jean-Pierre Bourguignon.................................................................4 Report: Europe endorses the ICMAT’s excellence in mathematical research..................................................................................8 Interview: Shigefumi Mori........................................................................ .......12 Questionnaire: David Ríos................................................................................14 Scientific Review: Channel capacities via p-summing norms...........................................................................................15 Profile of Omar Lazar.......................................................................................17 Agenda.............................................................................................................18 News ICMAT......................................................................................................18 Quarterly newsletter Production: Layout: Instituto de Ciencias Matemáticas Divulga S.L Equipo globalCOMUNICA N.9 II Quarter 2015 C/ Diana 16-1º C 28022 Madrid Collaboration: Edition: Carlos Palazuelos C/ Nicolás Carrera nº 13-15 Coordination: Susana Matas Campus de Cantoblanco, UAM Ignacio F. Bayo 29049 Madrid ESPAÑA Ágata Timón Translation: Jeff Palmer Editorial committee: Design: Manuel de León Fábrica
    [Show full text]