October 2012 OGC TC Meetings 出國報告

Total Page:16

File Type:pdf, Size:1020Kb

October 2012 OGC TC Meetings 出國報告 出國報告(出國類別:其他) October 2012 OGC TC Meetings 出國報告 出國人員:莊國煜、葉采芳 派赴國家:Korea/Souel 出國期間:101 年 10 月 06 日至 101 年 10 月 10 日(莊國煜)/ 101 年 10 月 13 日(葉采芳) 報告日期:101 年 11 月 09 日 摘 要 在 October 2012 OGC TC Meetings 標準會議在南韓首爾召開,會議從 10 月 07 日開 始,於 10 月 12 日結束,與會人數約兩百多人,包含各國的政府單位、民間企業公 司、非營利組織及大學等各類代表;我方將派遣兩位人員參與會議,分別為莊國煜和 葉采芳。主要任務主持 Open GeoSMS SWG,了解 OGC SWE DWG、KML2.3 SWC 、SensorML SWG 標準制定之進度及狀態,並參與 SWE for IoT SWG、Business Value Committee 與 Mass Market DWG 等相關會議。 技術貢獻: 本次會議完成 2 人次出席會議(出國報告 1 份),規畫人才培育 2 人。 會議解說: OGC 定期的會員大會,每年有四次,分別於三、六、九、十二月舉行。會員大會又 分為 Technical Committee Meeting 和 Planning Committee Meeting 兩類,本計畫將參加 針對技術部分的 Technical Committee Meeting 類,其中 Technical Committee Meeting 包含 Standard Working Groups (SWG) 與 Domain Working Groups (DWG)兩大類型會 議,SWG 會議主要針對特定標準進行主題與文件討論,而 DWG 會議多偏向針對主 題性應用之討論與分享。我方除了參與 SWE 相關之 SWG 會議外,亦參與討論並分 享於 SWE 或 Open GeoSMS 實作經驗或應用概念。此次派出兩位成員出席,其能充 分掌握 OGC SWE 與標準認證相關標準發展狀況與已實作應用情境,並推廣與分享 Open GeoSMS 於商業化應用與急難救助團體合作情形。 1 與會成員與工作分配 成 員 任 務 參與 KML 標準制訂及與相關組織討論標準制訂議題 主持 Open GeoSMS SWG 更新標準文件進度及討論議題 莊 國 煜 於 Asian Forum 分享整合式救災平台方案 (880771) 瞭解 Mass Market 相關組織發表標準應用於實際情境及經實際應用提 出建立標準的需求。 瞭解 Business Value Committee 相關組織發表討論議題及標準應用 參與並瞭解 SWE 的標準制訂進度及與相關組織討論標準制訂議題 葉 采 芳 主持 Open GeoSMS SWG 更新標準文件進度及討論議題 (A00011) 於 EDM DWG 及 Mass Market DWG 分享整合式救災平台方案 瞭解 SWE for IoT SWG 相關組織發表討論議題及標準應用 2 目錄 摘 要..............................................................1 一、 會議名稱......................................................4 二、 參加會議目的及效益............................................4 三、 會議時間......................................................4 四、 會議地點......................................................4 五、 會議過程......................................................5 六、 會議紀要......................................................9 七、 心得與建議...................................................26 附件..............................................................27 3 一、 會議名稱 October 2012 OGC TC Meetings 二、 參加會議目的及效益 推動我國所主導制定之Open GeoSMS標準,並推廣與分享Open GeoSMS於商業化應用 與國際急難救助團體合作情形。 參與OGC SWE相關標準會議,掌握SWE及SensorML最新標準現況及制訂方向、推動 技術提案。 參與SWE for IoT、Mass Market DWG與Business Value Committee會議,吸取其他OGC 會員開發經驗及發展SWE標準之實作經驗,以供我國LBS產業與國際合作可能性規劃 之基礎。 三、 會議時間 October 07 ~ 12,2012 四、 會議地點 The Coex Convention and Exhibition Center ("Coex Center") is located in Seoul,the capital of the Republic of Korea. Sponsors: Ministry of Land,Transport and Maritime Affairs (MLTM) 4 五、 會議過程 October 2012 OGC TC Meetings 議程如下: 5 6 7 8 六、 會議紀要 OGC Standards Tutorials 此次的 OGC 會議新加了一天的議程 OGC Standard Tutorials,主要希望讓更多的人 認識 OGC,了解 OGC 所制定的標準及使用 Open Standard 的好處。議程如下表所示: Time Program 08:00- Introduction to Geospatial Standards 10:00 - Dr. Carl Reed(OGC,CTO,OGC standard in general) 10:00- Coffee Break 10:20 10:20- Standards for Spatial Data Models 12:20 - Dr. John Herring(Oracle,US,geospatial information data model) 12:20- Lunch 13:30 13:30- GML 15:30 - Dr. David Burggraf(Galdos,Canada,Geography Markup Language) 15:30- Coffee Break 15:50 Sensor Web Enablement 15:50- - Dr. Steve Liang(University of Calgary,Canada,Sensor Web 17:50 Enablement standard) 首先由 OGC CTO,Carl Reed 介紹開放標準的好處,OGC 的來由、組織架構。一般 人想到標準的工作都是充滿疑惑及感到無趣的。然而我們正面對著全球的議題需要 全球的協調來解決。位置這樣的資訊在緊急管理、準備及回應上扮演了相當重要的 角色。在交通的管理上也是司空見慣的事情。而標準對這些議題可帶來的好處有哪 些呢? 根據 German DIN 的研究報告指出,標準可以提升全球貿易、促進合理化、品 質的保證等。而且比專利或證照有更好的效益在經濟成長上。全球的議題可能跨越 了很多的領域,而 OGC 的目標任務就是”Geospatial Interoperability”,為解決互操性 問題所帶來的花費在往往很高,然而透過標準,則大大減少。OGC 從 1994 年成立 至今,有超過 465 位的會員並不斷成長中,有 38 個標準,百多個實作的產品,廣泛 9 的使用者社群實作遍佈全球,並於許多 SDO(Standards Developing Organization)及 ISO 結盟及合作。 從 OGC 的架構圖來看主要有四大塊, Interoperability , Standards , CITE 及 Marketing and Communication。Interoperability Program 重點在於測試及驗證標準的 可行性。CITE 重點在於測試實作標準的產品其相容性。 OGC Structure OGC 最基本的目標即是互操性。當你缺乏互操性時你就會發現需要客制化的整合, 高花費的生產週期,很難快速的調動新的功能,還有很多重覆性的工程等。而標準 又為何要是開放式的呢? 主要為防止單一有與趣的團體去控制標準的發展。也可降 低系統及工程生命週期的花費。鼓勵市場的競爭。可選擇以想要的功能為主。避免 陷入專利架構中。 OGC 的標準即是 Open Standards,提供免費及公開的標準,沒有許可費用,立場中 立,資料中立,無單一個體控制標準,所有會員都享有平等的發聲。然而標準的發 展並不輕鬆,需要在以全球為基礎來合作,需要許多組織的合意,需要能提供能給 予,需要認證,重覆性的程序。 由於是教學課程,在大致介紹了 OGC 組織及開放標準的好處之後,Carl Reed 簡介 10 了幾個 OGC 的標準。Open GeoSMS 也在其中。 Introduction of Open GeoSMS David 接著介紹 GML(Geography Markup Language) GML 是一組 XML 技術,用來處理網路上的地理資訊。主要的目標是處理異質資料 倉儲間的資料交換。OGC 採納 GML 標準歷程如下: – GML 1.0 Apr 2000 (RDF,DTD,and XSD representations) – GML 2.0 Feb 2001 – GML 2.1 Jan 2002 – GML 3.0 Jan 2003 – GML 3.1 Feb 2004 – GML 3.2 Sep 2007 joint ISO standard ISO TC/211 19136 – GML 3.3 Jan 2012 (extensions to GML 3.2/ISO 19136) GML 除了本身是標準,同時也建立在其它的標準之上 11 – XML 1.0 – XML Schema 1.0 – XML namespaces – XPointer/XPath – XLink – ISO TC/211 ‧ 19107,19108,19109,19111,19123,19148,… GML 之所以以其它標準如 XML/XSD 為基礎是因為可以使用既有標準工作,無需客 制化新的一套,像是 Xerces,Saxon 等可以用來分析/驗證 XML 資料。也可以簡單 的整合不一樣的資料在單一文件裡或是使用 XLink 來連結其它的文件,XSLT 用來 轉換樣式,XPath 及 XPointer 來做 XML 資料元素/子集的選擇及指引,DTD,RDF 及 XSD 來做編碼及資料模型的表述, SVG,KML,VRML,X3D 用來做呈像。 而也有其它的標準建立在 GML 之上,如下: – WFS (Web Feature Server) – FPS (Feature Portrayal Service) – GMLJP2 (GML in JPEG2000) – CityGML (City Models/Planning) – O&M (Observations and Measurement) – AIXM (Aeronautical Navigation) – WXXM (Weather Events) – CSML (Climate Science) – GeoSciML (Geoscience) – DIGGS (Geotechnical/Geoenvironmental) – LandGML (Engineering/Construction) – OLS (Location Services) – … 會中 David 還以 HTML 的運作方式讓大家更快了解 GML。因為這兩個都是 Markup Language,只是 HTML 是超文字,GML 是地理資訊。一般的網頁客戶端會先對網 12 頁伺服器發出 Http Request,然後此網頁伺服器就會回應 HTML 以在客戶端呈現, 當然此網頁伺服器可能會連結到其它的網頁伺服器,透過 HyperLink。同樣的,如 果使用者需要的是地理資訊,網頁客戶端則會丟 Http Request 到 WFS(Web Feature Service),而 WFS 則會回應 GML,而連結到其它 WFS 的方式則是 XLink。 WFS 是用來提供並接受請求網頁上的 GML 特 色 。 客 戶 端 使 用 Http GET/POST/SOAP 進行對 WFS 的查詢過濾。 GML 中特性必需由 element 表現,而不能用 attribute 表現。因為 GML 注意到軟體 不會直譯 attribute 成特性。所以在 GML 裡只有少數的屬性像是 gml:id,srsNam, uom 及 xlink:href。屬性只被用來當成輔助的架構。 GML Introduction Steve 負責介紹 SWE 部份。根據一些學者的觀點及研究報告指出,網路上的連結裝 置數目在幾年後將會到達 50~60 億個,感測資料將會以驚人的方式成長。而如何去 連結不同的感測網路呢?有太多的格式而且各自以自己的語言呈現。因此, SWE(Sensor Web Enablement)因應而生。SWE 主要分成兩大塊 Information Models and Schema 及 Web Service Interfaces。定義了如何描述感測器,如何取得感測資 料,如何設定感測器等。 13 ●Standard Information Models and Schema – Observations and Measurements (O&M) – Core models and schema for observations – Sensor Model Language (SensorML) for In-situ and Remote Sensors - Core models and schema for observation processes: support for sensor components, georegistration,response models,post measurement processing – TransducerML – adds system integration and real-time streaming clusters of observations ●Standard Web Service Interfaces – Sensor Observation Service - Access Observations for a sensor or sensor constellation,and optionally,the associated sensor and platform data – Sensor Alert Service – Subscribe to alerts based upon sensor observations – Sensor Planning Service – Request collection feasibility and task sensor system for desired observations – Web Notification Service –Manage message dialogue between client and Web service(s) for long duration (asynchronous) processes – Sensor Registries – Discover sensors and sensor observations 14 在感測網頁上主要包含了三大實體。Observation,Phenomenon 及 Sensor。 Observation 使用 Sensor 觀察 Phenomenon 以得到感測值以描述 Phenomenon。而在 現實中,大部份的使用者只對感測值有與趣而非感測器本身。以下圖來看,每一格 資料代表在某個位置的某個特性 Observation 。若以一整列來看,使用者所關心的是 Feature3,因為使用者在意 Observation 在 Location(x3,y3)的所有特性,若以直行來 看,使用者在意的則是 Coverage2,Property2 所涵蓋的範圍。Steve 也介紹了 SensorML 的資料結構,大致可分為 6 大部份。感測器的詮釋資料,位置的描述,存 取輸入輸出的介面定義,輸入,輸出及實體/非實體副程序的收集。 SWE OGC Public Session & TC Opening Plenary 在 Public Session 會議中,為了使參與者了解 OGC 組織及其標準,由 OGC CTO Card 簡介 OGC 的組織架構及部份 OGC 標準, Open GeoSMS 有幸成為簡介之一的 標準,可見對 Open GeoSMS 的重視。會中並請 SWE,CityML 及 Indoor GML Chair 介紹其標準及相關應用發展。 15 目前以下的的候選標準已經進入 OAB(OGC Architecture Board ) review 階段,之後 將會進入 Public comment 階段。 SensorML2.0(this version has 50 plus examples) ARML2.0 Web Coverage Service2.0 Interface Standard- GeoTIFF Coverage Encoding Extension 近來已 reviewed Web Coverage Service Interface Standard – CRS Extension GML-IL extension (ready for public comment) OGC CTO Introduce Open GeoSMS 16 SWE Introduction CityGML Introduction 17 IndoorGML Introduction EDM DWG &Mass Market Geo DWG &Asian Forum 此次在分別在 EDM DWG,Mass Market Geo DWG 及 Asian Forum 會議中報告我方 在國際救災平台上的最新狀況。 在國際救災中,常常需要許多單位加入一同協助災區重建。可能包含了中央政府、 地方政府及 NGO。而如何讓這些單位間的資訊可以流通同時又保有各自的隱私即是 我方這次提出的解決方案。採用開放源平台 Ushahidi 收集資訊,Sahana 讓各單位管 理各自私有資訊如人員或物資等資料,並提供簡易的使用者介面給後端人員使用及 以使用者為中心的 Mobile App 給前線人員。整體的解決方案可協助救災團體間的互 助,讓前線人員更能專注在救災上,後端人員也可以更簡單的調派物資及協調事情 等。 18 此次東大教授 Shibasaki 提出制定一個標準以幫助 Moving Feature Data 的交換。因應 全球行動裝置的高普及率,日本之前在遭遇颱風地震造成電車停駛的狀況,人們大 量湧入公車站,但如何描述這些資料目前似乎尚未有標準的出現。因此,Shibasaki san 提出了工作計劃的草案,如下圖: 19 同時有幾項建議, 可以”Schema for Moving Features(ISO19141,2008)”為此次發展 的觀念架構。優先實現標準規格在 moving features 上,畢竟實作會是個很好的開 始。成為一個加值的標準,像是加上碰撞偵測等。應該避免重覆性的標準制定,可 以以已存在的標準為參考來發展新的標準。 20 SWE DWG 在此會議中, 我方報告了” SWE and IoT for Green & Intelligent Building”。 資訊和建 築是對彼此都陌生的產業。資訊科技發展迅速,而一棟建築物蓋好了之後,就能住 很久。該如何應用ICT的技術在建築上? 又一個系統是由多個組織所完成,彼此之間 又該如何溝通協調? KNX(EN 50090,ISO/IEC 14543)是個開放標準及協定,對智慧 建築標準化了以OSI為基礎的網路溝通協定。也定義了許多實體的溝通媒體如下: – Twisted pair wiring (inherited from the BatiBUS and EIB Instabus – standards) – Powerline networking (inherited from EIB and EHS - similar to that – used by X10) – Radio (KNX-RF) – Infrared – Ethernet (also known as EIBnet/IP or KNXnet/IP) 21 然而,SWE又如何應用在綠建築上呢?,SWE有關感測資料格式及定義使用者如何 請求及接受回應。因此,我們想要從最基本的感測器開始,跟服務商提倡SWE標 準,以REST和JSON為基礎。另外,OGC裡的其它相關標準,如CityGML,GML, IndoorGML對此也相當感興趣,各主席也聚在一起討論如何結合彼此的標準應用在 智慧綠建築上。 Open GeoSMS SWG 此次會議我方主持了 Open GeoSMS SWG,主要議程有三大項 ‧ Call for editor of OGC Open GeoSMS for ITU-T Recommendation ‧ Open GeoSMS SWG – Overview & Current Status ‧ Q&A / Discussion 我方先前已至 ITU-T Study Group17 報告 Open GeoSMS 標準及相關發展,ITU 對 22 Open GeoSMS 也表示及大的興趣,而根據 ITU 的標準流程,目前 OGC 已成為 ITU 的成員,所以接下來若要成為
Recommended publications
  • Understanding and Working with the OGC Geopackage Keith Ryden Lance Shipman Introduction
    Understanding and Working with the OGC Geopackage Keith Ryden Lance Shipman Introduction - Introduction to Simple Features - What is the GeoPackage? - Esri Support - Looking ahead… Geographic Things 3 Why add spatial data to a database? • The premise: - People want to manage spatial data in association with their standard business data. - Spatial data is simply another “property” of a business object. • The approach: - Utilize the existing SQL data access model. - Define a simple geometry object. - Define well known representations for passing structured data between systems. - Define a simple metadata schema so applications can find the spatial data. - Integrate support for spatial data types with commercial RDBMS software. Simple Feature Model 10 area1 yellow Feature Table 11 area2 green 12 area3 Blue Feature 13 area4 red Geometry Feature Attribute • Feature Tables contain rows (features) sharing common properties (Feature Attributes). • Geometry is a Feature Attribute. Database Simple Feature access Query Connection model based on SQL Cursor Value Geometry Type 1 Type 2 Spatial Geometry (e.g. string) (e.g. number) Reference Data Access Point Line Area Simple Feature Geometry Geometry SpatialRefSys Point Curve Surface GeomCollection LineString Polygon MultiSurface MultiPoint MultiCurve Non-Instantiable Instantiable MultiPolygon MultiLineString Some of the Major Standards Involved • ISO 19125, Geographic Information - Simple feature access - Part 1: common architecture - Part 2: SQL Option • ISO 13249-3, Information technology — Database
    [Show full text]
  • "The Global Spatial Data Infrastructure Association - Advancing a Location Enabled World"
    GSDI and IGS Newsletter, Vol. 4, No. 2 News from the GSDI Association and the International Geospatial Society Vol. 4, No. 2, 2014 "The Global Spatial Data Infrastructure Association - Advancing a Location Enabled World" ASSOCIATION NEWS Association since 2010. Within local conservation circles he was primarily known for co-directing, with his partner GSDI Association Board Member Mark Becker Dies of 30 years Lori Charkey, the Bergen Save the Watershed in Tragic Accident Action Network (Bergen SWAN).” The GSDI Association learned of the tragic death of CIESIN Associate Director Mark Becker at the age of 53, on 26 February 2014 in a multi-vehicle accident on the New York State Thruway in Woodbury, NY. Mark was the GSDI Board member representing ‘GSDI Related Global Initiatives’ and was a valued member of the GSDI Outreach and Membership Committee, where his input and insight will be much missed by his colleagues at the Association. Below is an extract from the tribute to Mark from CIESIN. “In his 15 years at CIESIN Mark made contributions that will be felt for a long time. He began his CIESIN career in Mark Becker leading a teacher training workshop for the February 1999, and was soon appointed head of the CHANGE Viewer mapping tool. Pictured behind him is Geospatial Applications Division. … In many ways he Amy Work, IAGT, who helped develop the tool. Palisades, helped bring GIS to Columbia, as manager of the GIS New York, July 2013. Source: CEISIN Service Center and ESRI site license. He helped install many of the early GIS labs on campus and helped train See the full tribute to Mark on the CIESIN website at many of the people who operated them.
    [Show full text]
  • Augmenting Hydrologic Information Systems with Streaming Water Resource Data
    AUGMENTING HYDROLOGIC INFORMATION SYSTEMS WITH STREAMING WATER RESOURCE DATA S. Esswein1, J. Hallstrom2, C. J. Post1, D. White3, G. Eidson4 AUTHORS: Forestry and Natural Resources1; School of Computing2; Computing and Information Technology3; Restoration Institute4, Clemson University, Clemson, SC USA 29634 REFERENCE: Proceedings of the 2010 South Carolina Water Resources Conference, held October 13-14, 2010, at the Columbia Metropolitan Convention Center. examined with an emphasis on design decisions regarding Abstract. Access to timely and accurate hydrological leveraging available standards and software. Insight and environmental observation data is a crucial aspect of garnered from several years of data acquisition experience an integrated approach to water resources management. is provided, along with a recent case study involving a This presentation describes an end-to-end system designed monitoring deployment supporting the Sand River to support realtime monitoring and management of water Headwaters Green Infrastructure project located in the resources. The main components of the hardware/software City of Aiken, South Carolina. infrastructure of this system are broken into four There are four components or tiers of a realtime- categories and briefly described. This organization monitoring infrastructure: (i) sensing platforms collect in provides the basis for a synthesis of several prominent situ observation data, (ii) communication and uplink standards and software solutions relevant to the technologies transmit realtime observation data, (iii) data hydrologic and environmental observing communities. streaming middleware provides highly distributed These standards are described in the context of their role publication and subscription of observation data, and (iv) in our end-to-end system. The presentation concludes with back-end repository and presentation services provide a a case study describing a green infrastructure monitoring means of viewing and utilizing data products.
    [Show full text]
  • An Interoperable Multi-Sensor System for Healthcare
    2013 IEEE GCC Conference and exhibition, November 17-20, Doha, Qatar An Interoperable Multi-Sensor System For Healthcare Bassant Selim Youssef Iraqi Ho-Jin Choi Khalifa University Khalifa University KAIST Sharjah, United Arab Emirates Sharjah, United Arab Emirates Daejeon, South Korea Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Pervasive healthcare systems, enabled by informa- an introduction to the sensor standards considered, section tion and communication technology (ICT), can allow the elderly IV presents the requirements and solutions that insure the and chronically ill to stay at home while being constantly adequate performance of our system, section V provides an monitored. Patient monitoring can be achieved by sensors and example of sensor Modeling Language description of a body sensor systems that are both worn by the patient and installed temperature sensor, section VI presents related works in the in his home environment. There is a large variety of sensors area of applying standards to healthcare monitoring systems available on the market that can all serve to this purpose. In order to have a system that is independent of the sensors that and finally section VII concludes this work. are used, standardization is the key requirement. This work aims to present a framework for healthcare monitoring systems based II. SYSTEM ARCHITECTURE on heterogeneous sensors. In order to achieve interoperability, standards are considered in the system design. The proposed system is composed of multiple hierarchical layers that are each responsible of monitoring different pa- Keywords—Heterogeneous Sensor Networks, SensorML, IEEE rameters of the patient’s health.
    [Show full text]
  • Semantic Sensor Observation Service
    Wright State University CORE Scholar The Ohio Center of Excellence in Knowledge- Kno.e.sis Publications Enabled Computing (Kno.e.sis) 5-2009 SemSOS: Semantic Sensor Observation Service Cory Andrew Henson Wright State University - Main Campus Josh Pschorr Wright State University - Main Campus Amit P. Sheth Wright State University - Main Campus, [email protected] Krishnaprasad Thirunarayan Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons Repository Citation Henson, C. A., Pschorr, J., Sheth, A. P., & Thirunarayan, K. (2009). SemSOS: Semantic Sensor Observation Service. 2009 International Symposium on Collaborative Technologies and Systems: May 18-22, 2009, Baltimore, Maryland, USA, 44-53. https://corescholar.libraries.wright.edu/knoesis/333 This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. 1 SemSOS: Semantic Sensor Observation Service Cory A. Henson, Josh K. Pschorr, Amit P. Sheth, and Krishnaprasad Thirunarayan Kno.e.sis Center, Department of Computer Science and Engineering Wright State University, Dayton, OH 45435 [email protected], [email protected], [email protected], [email protected] enabled by semantic modeling and what advantages this Abstract provides to standard SOS.
    [Show full text]
  • Geospatial Artificial Intelligence
    Geospatial Artificial Intelligence An introduction to pipelining for automated geospatial analysis, modelling and AI Simon D. Wenkel March 30, 2019 DRAFT 6 Selecting file formats Some of the biggest questions we have to ask ourselves when we start a geospatial project is what file formats do we want to use. There are many out there and some have their specific advantages for certain niches. GDAL/OGR [1] lists 96 vector formats and 155 raster formats. That is a lot to choose from. Comment 6.1 Utilizing normal files and databases for geospatial data In theory we could use any kind of file or database to store geospatial data as long as we know how we stored it and how the projection is linked to coordinates. Since the same coordinates will lead to different positions for different projections this can be dangerous and therefore is not recommended. However, we can see this often especially with text files and if they are not documented properly we end up with a big mess. 6.1 Databases vs. single files First, we have to decide on whether we want single files or a real database to store our data. The main challenge with geospatial data stored in single files is that we end up having multiple files that make a “single” file. If one of them is lost or not copied correctly we may are doomed if this is an essential one. The big advantage of using single files to store geospatial data is that if we manage to copy them correctly everyone can work with them without having deep knowledge on setting up databases.
    [Show full text]
  • DGIWG Service Architecture
    DGIWG – 306 DGIWG Service Architecture Document Identifier: TCR-DP-07-041-ed2.0.1-DGIWG_Service_Architecture Publication Date: 05 November 2008 Edition: 2.0.1 Edition Date: 05 November 2008 Responsible Party: DGIWG Audience: Approved for public release Abstract: This document provides architecture guidance to DGIWG. Copyright: (C) Copyright DGIWG, some rights reserved - (CC) (By:) Attribution You are free: - to copy, distribute, display, and perform/execute the work - to make derivative works - to make commercial use of the work Under the following conditions: - (By:) Attribution. You must give the original author (DGIWG) credit. - For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder DGIWG. Your fair use and other rights are in no way affected by the above. This is a human-readable summary of the Legal Code (the full license is available from Creative Commons <http://creativecommons.org/licenses/by/2.0/ >). DN:07-041 05 November 2008 Contents Executive summary ..................................................................................................... 1 Acknowledgement ....................................................................................................... 1 1 Introduction .......................................................................................................... 2 1.1 Scope .............................................................................................................
    [Show full text]
  • Current Status of Standards for Augmented Reality
    Current Status of Standards for Augmented Reality Christine Perey1, Timo Engelke2, Carl Reed3 Abstract This chapter discusses the current state, issues, and direction of the development and use of international standards for use in Augmented Reality (AR) applications and services. More specifically, the paper focuses on AR and mobile devices. Enterprise AR applications are not discussed in this chapter. There are many existing international standards that can be used in AR applications but there may not be defined best practices or profiles of those standards that effectively meet AR development requirements. This chapter provides information on a number of standards that can be used for AR applications but may need further international agreements on best practice use. Introduction Standards frequently provide a platform for development; they ease smooth opera- tion of an ecosystem in which different segments contribute to and benefit from the success of the whole, and hopefully provide for a robust, economically-viable, value chain. One of the consequences of widespread adoption of standards is a baseline of interoperability between manufacturers and content publishers. Anoth- er is the ease of development of client applications. In most markets, standards emerge during or following the establishment of an ecosystem, once a sufficient number of organizations see market and business value in interoperating with the solutions or services of others. Augmented Reality (AR) has arisen as a result of two driving forces: a push force brought about by convergence of improvements in technology (networking, com- putational, devices, display technology, sensors, etc) and a pull force arising from a critical mass of users who—once enabled with lighter, more powerful and less 1 Christine Perey, Spime Wrangler, PEREY Research & Consulting 2 Timo Engelke, Fraunhofer IGD 3 Carl Reed, PhD, CTO, Open Geospatial Consortium expensive technologies—seek knowledge and information in context with their surroundings.
    [Show full text]
  • Workshop Proceedings ENABLING SENSOR
    Ref. No. [UMCES]CBL 07-079 Alliance for Coastal Technologies Indexing No. ACT-06-07 Workshop Proceedings ENABLING SENSOR* INTEROPERABILITY Portland, Maine October 16-18, 2006 Funded by NOAA’s Coastal Services Center through the Alliance for Coastal Technologies (ACT) * For the purpose of the workshop, participants spoke in terms of “instruments” rather than “sensors,” defining an instrument as a device that contains one or more sensors or actuators and can convert signals from analog to digital. An ACT Workshop Report Enabling Sensor Interoperability Portland, Maine October 16-18, 2006 Sponsored by the Alliance for Coastal Technologies (ACT) and NOAA’s Center for Coastal Ocean Research in the National Ocean Service. Hosted by ACT Partner, Gulf of Maine Ocean Observing System. ACT is committed to develop an active partnership of technology developers, deliverers, and users within regional, state, and federal environmental management communities to establish a testbed for demonstrating, evaluating, and verifying innovative technologies in monitoring sensors, platforms, and software for use in coastal habitats. Enabling Sensor Interoperability ..................................................................................................... i TABLE OF CON T EN T S Executive Summary .........................................................................................................................1 Alliance for Coastal Technologies ...................................................................................................2
    [Show full text]
  • MASTERARBEIT Archiving Digital Maps with Geopackage and Vector
    MASTERARBEIT Archiving Digital Maps with GeoPackage and Vector-tile Dissemination Ausgeführt am Department für Geodäsie und Geoinformation der Technischen Universität Wien unter der Anleitung von Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien und Dipl.-Ing. Dr. Markus Jobst, Bundesamt für Eich- und Vermessungswesen Dr.-Ing. Christian Murphy, TU München durch Yunnan Chen Schulwinkel 4, Stuttgart 28.03.2019 Unterschrift (Student) i MASTER’S THESIS Archiving Digital Maps with GeoPackage and Vector-tile Dissemination Conducted at the Department of Geodesy and Geoinformation Technical University Vienna Under the supervision of Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Vienna and Dipl.-Ing. Dr. Markus Jobst, Federal Office of Metrology and Surveying Dr.-Ing. Christian Murphy, TU Munich by Yunnan Chen Schulwinkel 4, Stuttgart 28.03.2019 Signature (Student) ii Statement of Authorship Herewith I declare that I am the sole author of the submitted Master’s thesis entitled: “Archiving Digital Maps with GeoPackage and Vector-tile Dissemination” I have fully referenced the ideas and work of others, whether published or unpublished. Literal or analogous citations are clearly marked as such. Vienna, 28.03.2019 Yunnan Chen iii Acknowledgements The last two years in the International Cartography M.Sc. programme have been such a special journey. This master’s thesis could not be accomplished without the supports of many people. First, I would like to express my sincere gratitude and appreciation to my first supervisor and the deputy head of Information Management Department at Austrian Federal Office for Metrology and Surveying, Dr. Markus Jobst, who has been providing marvelous guidance, ideas, support, and suggestions in the last few months.
    [Show full text]
  • RMDCN Developments
    OGC Standards EGOWS 2010 ECWMF, Reading, 2010/06/1-4 Chris Little [email protected] +44 1392 886278 OGC Co-Chair Meteorology & Oceanography Domain Working Group © Crown copyright 2007 Apologies & Disclaimers I speak too fast No pictures I was involved in international standards • ISO • WMO View of the OGC ‘landscape’ • ‘Valleys & hills’ • NOT ‘Turn 3rd left after pub’ © Crown copyright 2007 Structure of Talk • Some Background • Why OGC? • Standards • Issues for Meteorology © Crown copyright 2007 OGC Standards Some Background © Crown copyright 2007 OGC Met Ocean DWG 2007: ECMWF 11th Workshop on Meteorological Operational Systems - recommended: 2008: ECMWF-OGC Workshop on Use of GIS/OGC Standards in Meteorology - recommended: - Establish OGC Met Domain WG - Establish WMO-OGC Memorandum of Understanding - Develop WMS meteorological profile - Develop core models and registries - Interoperability test beds for met. data & visualization OGC web services © Crown copyright 2007 OGC Who? • Open Geospatial Consortium http://opengeospatial.org • Non-profit making • Standards setting http://opengeospatial.org/standards • Global • >400 members http://opengeospatial.org/members • Industry • Government bodies • Academia • Individuals © Crown copyright 2007 OGC How? TC - Technical Conference, 4 days every 3 months - Darmstadt Sept 2009 EUMETSAT - Mountainview Dec 2009 Google - Frascati Mar 2010 ESA SWG - Standards Working Groups, ~24, - Fast track to ISO, short lived, ‘vertical’ DWG - Domain Working Groups, ~27 - Cross-cutting, longer lived,
    [Show full text]
  • OGC Environmental Data Standards for Monitoring and Mapping
    OGC Environmental Data Standards for Monitoring and Mapping LANDCARE RESEARCH – Alistair Ritchie Research Data Architect/Engineer | Informatics Team MANAAKI WHENUA 2 P A G E INTRODUCTION • What is the OGC and WSMA*? • Earth science (and Agriculture) Working Groups • When one bureaucracy isn’t enough – the OGC and ISO and W3C • Overview by example – OGC Soil Data Interoperability Experiment LANDCARE RESEARCH – • Coming soon – a peak over the horizon • Why participation is valuable for New Zealand MANAAKI WHENUA * Why So Many Acronyms A p r i l 1 8 3 P A G E THE OPEN GEOSPATIAL CONSORTIUM (OGC) • ‘The Open Geospatial Consortium (OGC) is an international industry consortium of over 529 companies, government agencies and universities participating in a consensus process to develop publicly available interface standards.’ From: http://www.opengeospatial.org/ogc • New Zealand members: LANDCARE RESEARCH – − Hawkes Bay RC, Horizons RC, Land Information NZ, Manaaki Whenua, Ministry for the Environment, NIWA • Consensus driven specification of standards for: − the behaviour and implementation of data services (interoperable communication protocols) − data formats (geography mark-up language; GeoPackage) MANAAKI WHENUA − the structure of data describing real world things (hydrological features, observation and sampling data, aviation data …) − best practices for applying and using standards − policies and tools for testing and endorsing compliance with the standards • Standardisation by innovation and doing − heavy emphasis on large scale Testbeds
    [Show full text]