CHAPTER-IV an Improved Process for Synthesis of Febuxostat Which Is an Inhibitor of Xanthine Oxidase

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER-IV an Improved Process for Synthesis of Febuxostat Which Is an Inhibitor of Xanthine Oxidase CHAPTER-IV An improved process for synthesis of Febuxostat which is an inhibitor of xanthine oxidase. INTRODUCTION : The clinical manifestations of gout, a spectrum of monoarthritic disorders characterized by crystallization of monosodium urate from supersaturated body fluids into tissues, have been well described for centuries. Although historically associated with royalty and affluent societies, increased longevity and shifts in patterns of diet and lifestyle have led to an increasing prevalence of gout worldwide, including in less-developed countries. 1,2 Attacks of acute gouty arthritis are usually treated with NSAIDs, colchicine, or corticosteroids; however, because hyperuricemia is the primary antecedent biochemical abnormality observed in patients with acute gouty arthritis, urate-lowering agents are the foundation for prevention of further attacks. Colchicine was used originally to treat rheumatic complaints, especially gout. It has toxic side effects which include gastrointestinal upset and neutropenia. 3 Colchicine poisoning has been compared to arsenic poisoning; symptoms start 2 to 5 hours after the toxic dose has been ingested and include burning in the mouth and throat, fever, vomiting, diarrhea, abdominal pain and kidney failure. 4 Hyperuricemia in humans is best defined as a serum uric acid of >6.8 mg/dL, which approaches the limit of solubility for monosodium urate in extracellular fluids. 5 Uric acid is the terminal product of a cascade of metabolic steps produced by xanthine oxidase from xanthine and hypoxanthine, which in turn are produced from purine. Uric acid is more toxic to tissues than either xanthine or hypoxanthine. Uric acid is released in hypoxic conditions. 6 In humans and higher primates, uric acid is the final oxidation (breakdown) product of purine metabolism and is excreted in urine. Excess serum accumulation of uric acid can lead to a type of arthritis known as gout. 7 This painful condition is the result of needle-like crystals of uric acid precipitating in joints and capillaries. Various factors, such as age, body weight, diet, temperature, and pH, are known to influence both the concentration and solubility of monosodium urate; however, normal 128 physiologic homeostasis is able to maintain serum uric acid levels below the point of supersaturation and subsequent crystal formation. As the total pool of serum uric acid in the body rises, either because of overproduction or underexcretion, the risk of an acute gout attack increases in a continuous manner. The estimated 5-year cumulative risk of gout is <1% in patients with serum uric acid <7 mg/dL, but >25% of those with urate levels >10 mg/dL will likely experience an attack. 8 In chronic gout, polyarticular involvement may be noted. If left untreated, acute gout attacks generally resolve within 2 weeks. Approximately 80% of patients experiencing their first gout attack will have a recurrence within 2 years. 9 If the underlying hyperuricemia is left untreated, intercritical periods become shorter and attacks become more common. Therefore, reducing the total body pool of urate with lifestyle and pharmacologic interventions is an important step in preventing recurrent attacks. The main reasons for high uric acid level are: • Diet may be a factor in Metabolic Syndrome, fructose and sucrose can cause increased levels of uric acid. • Eating large amounts of sea salt can cause increased levels of uric acid • Serum uric acid can be elevated due to reduced excretion by the kidneys. • Serum uric acid can be elevated due to high intake of dietary purine. • Fe activates xanthine oxidase (XO) and Cu deactivates it, so that as men accumulate Fe with age and Cu levels decline as testosterone levels drop with age (testosterone increases Cu half life), eventually the high Fe/Cu results in more active XO and higher urate levels. A xanthine oxidase inhibitor is any substance that inhibits the activity of xanthine oxidase, an enzyme involved in purine metabolism. In humans, inhibition of xanthine oxidase reduces the production of uric acid, and several medications that inhibit xanthine oxidase are indicated for treatment of hyperuricemia and related medical conditions including gout. Xanthine oxidase inhibitors are being investigated for management of reperfusion injury. 129 Xanthine oxidase inhibitors are of two kinds: purine analogues and others. Purine analogues include allopurinol, oxypurinol,10 and tisopurine. Other group of xanthine oxidase inhibitors include febuxostat 11 and inositols. In some cases, for allopurinol, severe life- threatening side effects have been reported. These include a toxicity syndrome dramatized by eosinophilia, vasculitis, rash hepatitis, and progressive renal failure. Therefore, novel non-purine alternatives to allopurinol with potent XO inhibitory activity, but possessing fewer side effects are in great demand. Under efforts to find novel XO inhibitors without purine backbone, 2-phenylthiazoles and 1-phenylpyrazoles had been designed and tested as xanthine oxidase inhibitors. Among them, febuxostat is shown to be promising xanthine oxidase inhibitor. Febuxostat received marketing approval by the European Medicines Agency on April 21, 2008 12 and was approved by the U.S. Food and Drug Administration on February 16, 2009. 13 OMe OMe O OMe O N H3C H N NH O OMe N N H Cholchicine Allopurinol CH3 CH3 O S O NC N OH CH3 Febuxostat 130 PRESENT WORK Chemically febuxostat is 2-(3-cyano-4-isobutoxyphenyl)-4-methyl-1,3-thiazole-5- carboxylic acid which is an inhibitor of xanthine oxidase that is indicated for the use in treatment of hyperuricemia and gout. It is a non-purine selective inhibitor of xanthine oxidase. It works by non-competitively blocking the channel leading to the active site on xanthine oxidase. Xanthine oxidase is needed to successively oxidate both hypoxanthine and xanthine to uric acid. Febuxostat inhibits xanthine oxidase activity, therefore reducing production of uric acid. CH3 CH3 O S O NC N OH CH3 Febuxostat (1) Process development work was undertaken to make drug available in country. The reported methods for synthesis of febuxostat involve construction of thiazole ring from properly substituted benzene derivative. One of the method to prepare febuxostat ( 1) as per Scheme-114 involves reaction of 4- nitrobezonitrile with KCN in hot DMSO followed by treatment with isobutyl bromide and potassium carbonate to give intermediate 4. Reaction of 4 with thioacetamide in hot DMF gives intermediate 5 which on cyclization using Ethyl-2-chloroacetoacetate followed by alkaline hydrolysis gives febuxostat ( 1). 131 CH 3 CH3 CH 3 CH3 KCN/DMSO, O MeCSNH 2 O2N O Isobutyl bromide/K 2CO 3 DMF 70°C/6.0 h 45°C/ 40 h S CN NC CN NC 4 5 NH2 CH CH3 3 CH CH3 3 Ethyl-2-chloroacetoacetate THF/Ethanol O O Ethanol NaOH O 100°C/ 2 h S 60°C S NC NC COOEt N N OH CH CH3 3 3 Febuxostat (1) Scheme 1 In another synthesis 15 of febuxostat ( 1), 4-hydroxy-3-nitobenzaldehyde is reacted with hydroxylamine and sodium formate in refluxing formic acid to give 4-hydroxy-3- nitobenzbenzonitrile ( 6) which is further treated with thioacetamide in hot DMF to yield corresponding thiobenzamide 7. Cyclization of 7 with ethyl-2-chloroacetoacetate in refluxing ethanol gives intermediate 8, which on o-alkylation with isobutyl bromide in presence of K2CO 3 in hot DMF providing the isobutyl ether 9. The reduction of nitro group of 9 with H 2/Pd-C gives amino derivative 10 , which on diazotization with NaNO 2/HCl followed by treatment with CuCN and KCN gives 3. The alkaline hydrolysis of 3 gives febuxostat ( 1) (Scheme-2) . 132 MeCSNH Ethyl-2-chloroacetoacetate NH OH 2 2 HO - HO Ethanol HO HCOONa DMF HCl Formic acid 80°C/ 1 h S reflux/ 5 h O N CN O2N O2N CHO reflux/ 5.0 h 2 NH 6 7 2 CH3 CH3 CH3 Isobutyl bromide CH HO 3 H2,Pd-C DMF/K CO O 2 3 O EtOH, EtOAc S 70°C/18 h RT/24 h S O2N H N COOEt S 2 COOEt O N N 2 COOEt N N CH CH 3 10 3 8 9 CH3 CH3 CH3 CH CH 3 3 THF/Ethanol NaNO 2, HCl O CuCN, KCN O NaOH 60°C S O S NC NC COOEt N N OH CH3 CH3 Febuxostat (1) 3 Scheme 2 16 In one more synthesis of febuxostat ( 1) (scheme 3), condensation and cyclization of 4-hydroxythiobenzamide with 2-bromoacetoacetic acid ethyl ester in refluxing ethanol provides 11 which is formylated by reaction with hexamethylenetetramine and polyphosphoric acid in hot acetic acid/water to afford 12 . Alkylation of 12 with isobutyl bromide in presence of potassium carbonate and potassium iodide in dimethylformamide gives 13 , which on treatment with formic acid, sodium formate and hydroxylamine hydrochloride yields 3. Finally alkaline hydrolysis of 3 using sodium hydroxide in THF/ethanol gives febuxostat ( 1). 133 Ethyl-2-bromo- OH HO HO acetoacetate HMTA Ethanol S S OHC reflux COOEt PPA/100°C COOEt N N CH 3 CH3 S NH2 4-Hydroxythiobenzamide 11 12 CH3 CH3 CH3 CH3 Isobutyl bromide O O NH OH.HCl DMF/K 2CO 3 2 S S HCOONa/HCOOH NC OHC COOEt COOEt N N CH3 CH3 13 3 CH3 CH3 O NaOH S O THF/Ethanol NC N OH CH3 Febuxostat (1) Scheme 3 The first two methods (scheme 1 & 2) have following drawbacks in comparison to scheme 3. These drawbacks include: • Use of hazardous reagents like KCN, CuCN which are industrially unsafe. • Low yields and use of column chromatography for purification process, which makes it industrially unviable. A key step in the synthesis of febuxostat as per scheme 3 was introduction of formyl group selectively at ortho position to the hydroxyl group in compound 11 . Classical Duff reaction 17 of phenol derivative using HMTA and acetic acid results in ortho formylation.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Alternatives to Allopurinol Hyper-Responsiveness to EBV In
    Ann Rheum Dis: first published as 10.1136/ard.46.6.493-a on 1 June 1987. Downloaded from Correspondence 493 2 Ropes M W. Bennett G A. Cobb S. Jacox R. Jessar R A. 6 Auscher C. Pasquier C. Mercier N. Delbarre F. Oxidation of Revision of diagnostic criteria for rheumatoid arthritis. Bull pyrazolo (3.4-d) pyrimidine in a xanthinuric man. Isr J Med Sci Rheu,n Dis 1958: 9: 175-6. 1973: 9: 3. 3 Nepom G T. Seyftied C E. Holbeck S L. Wilske K R. 7 Elion G B. Benezra F M. Caneilas 1. Carrington L 0. Hitchings Nepom B S. Identification of HLA-DwI4 genes in DR4+ G H. Effects of xanthine oxidase inhibitors on purine meta- rheumatoid arthritis. Lancet 1986: ii: 1(0)2-5. bolism. Isr J Clzetn 1968; 6: 787-96. 8 Rundles R W. Metz E N. Silberman H R. Allopurinol in the treatment of gout. Aiiii ltiter,i Med 1966: 64: 229-58. 9 Delbarre F. Amor B. Auscher C. De Gery A. Treatment of gout with allopurinol: a studv of 1t)6 cases. Ann,l Rheutn Dis Alternatives to allopurinol 1966: 25: 627-33. 10 Rundles R W. Metabolic effects of allopurinol and In their letter to the Annals Kelsey et al state that alloxanthine. Atiti Rheu,n Dis 1966: 25: 615-2). SIR, 11 Lockard 0 Jr, Harmon C. Nolph K. Irvin W. Allergic reaction there is 'no available alternative to allopurinol with its to allopurinol with cross-reactiyity to oxypurinol. Ann Intern unique mode of action'.' There are at least two alter- Med 1976; 85: 333-5.
    [Show full text]
  • General Pharmacology
    GENERAL PHARMACOLOGY Winners of “Nobel” prize for their contribution to pharmacology Year Name Contribution 1923 Frederick Banting Discovery of insulin John McLeod 1939 Gerhard Domagk Discovery of antibacterial effects of prontosil 1945 Sir Alexander Fleming Discovery of penicillin & its purification Ernst Boris Chain Sir Howard Walter Florey 1952 Selman Abraham Waksman Discovery of streptomycin 1982 Sir John R.Vane Discovery of prostaglandins 1999 Alfred G.Gilman Discovery of G proteins & their role in signal transduction in cells Martin Rodbell 1999 Arvid Carlson Discovery that dopamine is neurotransmitter in the brain whose depletion leads to symptoms of Parkinson’s disease Drug nomenclature: i. Chemical name ii. Non-proprietary name iii. Proprietary (Brand) name Source of drugs: Natural – plant /animal derivatives Synthetic/semisynthetic Plant Part Drug obtained Pilocarpus microphyllus Leaflets Pilocarpine Atropa belladonna Atropine Datura stramonium Physostigma venenosum dried, ripe seed Physostigmine Ephedra vulgaris Ephedrine Digitalis lanata Digoxin Strychnos toxifera Curare group of drugs Chondrodendron tomentosum Cannabis indica (Marijuana) Various parts are used ∆9Tetrahydrocannabinol (THC) Bhang - the dried leaves Ganja - the dried female inflorescence Charas- is the dried resinous extract from the flowering tops & leaves Papaver somniferum, P album Poppy seed pod/ Capsule Natural opiates such as morphine, codeine, thebaine Cinchona bark Quinine Vinca rosea periwinkle plant Vinca alkaloids Podophyllum peltatum the mayapple
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 100 Ol
    US 2002O102215A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 Klaveness et al. (43) Pub. Date: Aug. 1, 2002 (54) DIAGNOSTIC/THERAPEUTICAGENTS (60) Provisional application No. 60/049.264, filed on Jun. 6, 1997. Provisional application No. 60/049,265, filed (75) Inventors: Jo Klaveness, Oslo (NO); Pal on Jun. 6, 1997. Provisional application No. 60/049, Rongved, Oslo (NO); Anders Hogset, 268, filed on Jun. 7, 1997. Oslo (NO); Helge Tolleshaug, Oslo (NO); Anne Naevestad, Oslo (NO); (30) Foreign Application Priority Data Halldis Hellebust, Oslo (NO); Lars Hoff, Oslo (NO); Alan Cuthbertson, Oct. 28, 1996 (GB)......................................... 9622.366.4 Oslo (NO); Dagfinn Lovhaug, Oslo Oct. 28, 1996 (GB). ... 96223672 (NO); Magne Solbakken, Oslo (NO) Oct. 28, 1996 (GB). 9622368.0 Jan. 15, 1997 (GB). ... 97OO699.3 Correspondence Address: Apr. 24, 1997 (GB). ... 9708265.5 BACON & THOMAS, PLLC Jun. 6, 1997 (GB). ... 9711842.6 4th Floor Jun. 6, 1997 (GB)......................................... 97.11846.7 625 Slaters Lane Alexandria, VA 22314-1176 (US) Publication Classification (73) Assignee: NYCOMED IMAGING AS (51) Int. Cl." .......................... A61K 49/00; A61K 48/00 (52) U.S. Cl. ............................................. 424/9.52; 514/44 (21) Appl. No.: 09/765,614 (22) Filed: Jan. 22, 2001 (57) ABSTRACT Related U.S. Application Data Targetable diagnostic and/or therapeutically active agents, (63) Continuation of application No. 08/960,054, filed on e.g. ultrasound contrast agents, having reporters comprising Oct. 29, 1997, now patented, which is a continuation gas-filled microbubbles stabilized by monolayers of film in-part of application No. 08/958,993, filed on Oct.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • (Indol-5-Yl)Thiazolederivatives As Xanthine Oxidase(XO)Inhibitors
    J. Chosun Natural Sci. Vol. 9, No. 3 (2016) pp. 190 − 198 http://dx.doi.org/10.13160/ricns.2016.9.3.190 Comparative Molecular Similarity Index Analysis on 2-(indol-5-yl)thiazolederivatives as Xanthine Oxidase(XO)inhibitors Santhosh Kumar Nagarajan and Thirumurthy Madhavan† Abstract Xanthine Oxidase is an enzyme, which oxidizes hypoxanthine to xanthine, and xanthine to uric acid. It is widely distributed throughout various organsincluding the liver, gut, lung, kidney, heart, brain and plasma. It is involved in gout pathogenesis. In this study, we have performed Comparative Molecular Field Analysis (CoMSIA) on a series of 2-(indol- 5-yl) thiazole derivatives as xanthine oxidase (XO) inhibitors to identify the structural variations with their inhibitory activities. Ligand based CoMSIA models were generated based on atom-by-atom matching alignment. In atom-by-atom matching, the bioactive conformation of highly active molecule 11 was generated using systematic search. Compounds were aligned using the bioactive conformation and it is used for model generation. Different CoMSIA models were generated using different alignments and the best model yielded across-validated q2 of 0.698 with five components and non-cross-validated correlation coefficient (r2) of 0.992 with Fisher value as 236.431, and an estimated standard error of 2 0.068. The predictive ability of the best CoMSIA models was found to be r pred 0.653. The study revealed the important structural features required for the biological activity of the inhibitors and could provide useful for the designing of novel and potent drugs for the inhibition of Xanthine oxidase. Keywords: Xanthine Oxidase, Gout, 3D-QSAR, CoMSIA.
    [Show full text]
  • HLA Antigens Dw4 and Dw14 in Rheumatoid Arthritis
    Ann Rheum Dis: first published as 10.1136/ard.46.6.492 on 1 June 1987. Downloaded from 492 Correspondence absence of another cause such as renal failure or liver Table 1 Phenotvpes of DW4 or Dw/4 positive patients, or disease), as has been previously suggested; however, it can patients positive for both also be associated with an acute phase reaction, and this should be borne in mind when interpreting the significance Patient.s witliout Patients with of VWF measurements. toxch- effects toxic eff cts ( =23) (0t =61) MRC Clinical Research Centre. J L GORDON Dw4/x or -, 6 13 Harrow. B E POTTINGER DwI4/x or - 2 6 Middlesex P woo Dw4/w14 5 () H6pital Henri Mondor. J ROSENBAUM "D typing missed in one patient. Paris .x means any other HLA-D specificitNr found. West Middlesex Hospital. C M BLACK 'In DR typing only DR4 was found. Isleworth. Middlesex group. which was more heterogeneous as to the American References Rheumatism Association criteria.-' Although we emphasised the differences in Dw4 and I Jaffc E A. Hoyer L W. Nachman R L. Synthesis of von Willebrand antihemophilic factor antigen by cultured human Dwl frequencies between the groups. the higher Dw14 cndothelial cells. Proc Natl Acad Sci USA 1973: 71: 1906-9. prevalence in the RA controls with classical RA was 2 Sakariassen K S. Bolhuis P A. Sixma J J. Human blood platelet disregarded in the discussion. adhcrence to artery subendothelium is mcdiated by factor VlIl- Recently, Dr Nepom and colleagues identified HLA- von Willebrand factor bound to the subendothelium.
    [Show full text]
  • Alternatives to Allopurinol Hyper-Responsiveness to EBV In
    Ann Rheum Dis: first published as 10.1136/ard.46.6.493-b on 1 June 1987. Downloaded from Correspondence 493 2 Ropes M W. Bennett G A. Cobb S. Jacox R. Jessar R A. 6 Auscher C. Pasquier C. Mercier N. Delbarre F. Oxidation of Revision of diagnostic criteria for rheumatoid arthritis. Bull pyrazolo (3.4-d) pyrimidine in a xanthinuric man. Isr J Med Sci Rheu,n Dis 1958: 9: 175-6. 1973: 9: 3. 3 Nepom G T. Seyftied C E. Holbeck S L. Wilske K R. 7 Elion G B. Benezra F M. Caneilas 1. Carrington L 0. Hitchings Nepom B S. Identification of HLA-DwI4 genes in DR4+ G H. Effects of xanthine oxidase inhibitors on purine meta- rheumatoid arthritis. Lancet 1986: ii: 1(0)2-5. bolism. Isr J Clzetn 1968; 6: 787-96. 8 Rundles R W. Metz E N. Silberman H R. Allopurinol in the treatment of gout. Aiiii ltiter,i Med 1966: 64: 229-58. 9 Delbarre F. Amor B. Auscher C. De Gery A. Treatment of gout with allopurinol: a studv of 1t)6 cases. Ann,l Rheutn Dis Alternatives to allopurinol 1966: 25: 627-33. 10 Rundles R W. Metabolic effects of allopurinol and In their letter to the Annals Kelsey et al state that alloxanthine. Atiti Rheu,n Dis 1966: 25: 615-2). SIR, 11 Lockard 0 Jr, Harmon C. Nolph K. Irvin W. Allergic reaction there is 'no available alternative to allopurinol with its to allopurinol with cross-reactiyity to oxypurinol. Ann Intern unique mode of action'.' There are at least two alter- Med 1976; 85: 333-5.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]