Polyphagy in True Bugs: a Case Study of Leptoglossus Phyllopus (L.) (Hemiptera, Heteroptera, Coreidae)1

Total Page:16

File Type:pdf, Size:1020Kb

Polyphagy in True Bugs: a Case Study of Leptoglossus Phyllopus (L.) (Hemiptera, Heteroptera, Coreidae)1 ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Mitchell Paula Levin Artikel/Article: Polyphagy in True Bugs: A case study of Leptoglossus phyllopus (L.) (Hemiptera, Heteroptera, Coreidae) 1117-1134 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Polyphagy in True Bugs: A case study of Leptoglossus phyllopus (L.) (Hemiptera, Heteroptera, Coreidae)1 P.L. MITCHELL Abstract: The polyphagous species Leptoglossus phyllopus (L.) was examined with respect to host plant preference, tissue feeding specificity, seasonal dispersal among host plants, and life history. Mark-recap- ture, census, and rearing experiments demonstrated that this species exhibits true polyphagy, in that in- dividual bugs feed on plants from more than one family. Developmental parameters such as growth and survivorship did not differ among plants from several families, but did vary significantly with quality of host (e.g., wild vs. cultivated). Stadium duration, however, varied among wild host plant species in la- boratory experiments. Specialization on reproductive plant parts, coupled with sequential polyphagy and dispersal among a variety of seasonal host plants, allows multiple generations per year. Modes of fee- ding and preferred target tissues among coreids are discussed. Key words: leaffooted bug, Leptoglossus phyllopus, polyphagy, stylet sheath, target tissue. Introduction spp.), for example, employ a macerate-and- flush process, whereas an osmotic pump For phytophagous insects with piercing- mechanism is associated with coreids (MILES sucking mouthparts, feeding selectivity op- & TAYLOR 1994). However, some pentato- erates on two levels: preferred target tissue mids and lygaeids shift between salivary and host plant species. Tissue preference is sheath formation and lacerate-and-flush considered to be a conservative evolution- feeding (MILES 1972). ary character (TONKYN & WHITCOMB 1987); for example, specialization on xylem, Preference for a particular plant devel- phloem, or parenchyma is characteristic of opmental stage or structure (e.g., growing subfamilies or families in Auchenorrhyncha shoots, buds, ripe seeds), may also be associ- (PORT 1978). Phytophagous Heteroptera ated with specific groups. Pyrrhocoroidea have been extensively analyzed with respect feed predominantly on mature seeds, tingids to several factors associated with target tis- prefer mature leaves, while phytophagous sue preference: mouthpart morphology, sali- mirids concentrate on flowers, buds, and vary chemistry, preference for plant parts or new foliage (SCHUH & SLATER 1995). In structures, and mode of feeding (MILES some cases, however, such trends only be- 1972; COBBEN 1978; MILES & TAYLOR 1994; come evident at the tribal or even generic HORI 2000). The enzyme components of level. SCHAEFER & MITCHELL (1983) noted heteropteran saliva are considered to be a that an affinity for vegetative or reproduc- family-level character (MILES, cited in HORI tive structures is characteristic of tribes 2000), although induction of proteolytic en- within the Coreidae. Among Australian zymes has been demonstrated in a zoophy- coreids, KUMAR (1966) recognized two dif- tophagous mirid (ZENG & COHEN 2001). ferent types of feeding – exclusive sap feed- The mode of feeding may also be associated ing is found in some genera whereas others with particular taxa. Mirids (e.g., Lygus feed on both sap and fruit. However, such Denisia 19, zugleich Kataloge 1Dedicated affectionately to Ernst Heiss, my delightful colleague on the Executive Committee of the International der OÖ. Landesmuseen Heteropterists’ Society and heteropterist extraordinaire. Neue Serie 50 (2006), 1117–1134 1117 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at diversity of feeding was considered by phytophagous groups, he proposed that sap- COBBEN (1978) to indicate a “phase of un- feeding originated from polyphagous seed- balanced equilibrium.“ feeding, with the former mode of feeding tending toward a more restricted host range Even fewer generalizations may be made (COBBEN 1978). In Hemiptera in general, regarding host-plant specificity. Curiously, tissue-feeding specialization has been associ- the question of diet breadth in Heteroptera ated with host plant specificity (BERNAYS & has not been explored with the intense fer- CHAPMAN 1993), but this observation is vor devoted to insect-plant interactions in based primarily on the British fauna, and is Lepidoptera, Orthoptera, and other orders biased toward Sternorrhyncha and Auchen- of chewing insects. COBBEN (1978) charac- terized the Tingidae as monophagous while orrhyncha. Clearly, more information on suggesting that “polyphagy prevails“ among polyphagy in Heteroptera is needed. the phytophagous Miridae; but he provided The objective of this research was to no comparable analysis for the Pentatomo- conduct a detailed study of polyphagous morpha. Nearly 30 years have passed since feeding behavior in a single coreid species, the publication of COBBEN’s (1978) monu- the leaffooted bug Leptoglossus phyllopus mental study of mouthparts and feeding (L.). Host range and dispersal, seasonal pat- strategies, but our understanding of het- terns of host plant use, preferred feeding eropteran-plant relationships remains limit- site, and target tissue were examined in or- ed. Neither facultative zoophagy nor the ex- der to characterize the factors influencing treme polyphagy associated with some het- host plant selection. Leptoglossus phyllopus eropterans is properly understood (ZENG & damages legumes, tomatoes, tree nuts, and COHEN 2001). WHEELER (2001) observes citrus in the southern and eastern United that despite an extensive literature on crop States (MITCHELL 2000), and is considered a injury, there are “large gaps in our knowl- minor economic pest. The primarily edge of mirid-plant interactions.“ Informa- Neotropical genus Leptoglossus GUERIN was tion for some heteropteran groups is lacking, selected for study because it includes species detailed ecological studies of bugs outside of exhibiting widely disparate feeding strate- agroecosystems are uncommon, and adult gies ranging from strict monophagy to ex- host plant records are not always reliable in- treme polyphagy, as well as a number of dicators of breeding hosts (SCHAEFER & species of economic importance. Several MITCHELL 1983). Leptoglossus species are presently expanding Polyphagy in Heteroptera is of great in- their ranges – and potential for economic terest from both an economic and an evolu- damage – geographically. The highly tionary standpoint. Many of the major agri- polyphagous L. zonatus (DALLAS), a pest of cultural pests (e.g., Nezara viridula (L.), Rip- many crops in Mexico and South America, tortus clavatus (THUNBERG), Leptoglossus has recently invaded the southeastern Unit- zonatus (DALLAS), Lygus lineolaris (PALISOT ed States to Florida (BUSS et al. 2005) and DE BEAUVOIS)) have a wide range of host has become a pest of Satsuma oranges in plants (SCHAEFER & PANIZZI 2000). Howev- Louisiana, displacing L. phyllopus (HENNE et er, it is important to distinguish between al. 2003). Leptoglossus occidentalis HEIDE- generalist species composed of more special- MANN, once restricted to conifers in western ized populations and polyphagy at the indi- North America, has spread rapidly eastward vidual level (i.e., diet mixing) (FOX & MOR- across the continent to Ontario and New ROW 1981; BERNAYS & MINKENBERG 1997). England (RIDGE-O’CONNOR 2001). Acci- The evolution of omnivory has been shown dentally introduced into Italy in 1999 (TAY- to correlate with polyphagy in Heteroptera LOR et al. 2001), this species has now spread (EUBANKS et al. 2003), and these authors to Central Europe (RABITSCH & HEISS proposed that polyphagous, seed-feeding 2005). Thus, information on the feeding be- herbivores may be more likely to expand the havior of L. phyllopus may be applicable not diet to consume animal prey. COBBEN (1978, only in the southeastern United States, but 1979) considered polyphagous carnivory to to congeneric species of economic impor- be plesiomorphic within Heteroptera. For tance elsewhere. 1118 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Materials and Methods Both L. phyllopus and another coreid, Eu- thochtha galeator (F.), were monitored. Num- Study site: Research was conducted pri- ber of adults, nymphs of all instars, and cop- marily at Brackenridge Field Laboratory ulations were counted. Location of bugs on (BFL), operated by The University of Texas the plant was noted in greater detail than in at Austin. This field station is located inside earlier censuses, differentiating between the city limits of Austin, Texas, along the bud, stem, and leaf primordia as well as be- shores of the Colorado River, and comprises tween mature plant organs. The 1979 cen- 32 hectares of grassland, cedar-post oak sus covered the entire reproductive life span scrub and semi-deciduous woodland. of the host plant Cirsium texanum BUCKL., Four study plots, each measuring 92.9 from bolting through seed set. 2 m , were established at BFL to investigate A plant census was conducted monthly seasonal activity of L. phyllopus and other in each study site in conjunction with the coreids. All plots were located in either ear- bug censuses in 1977 and 1978. Each plot ly successional or cultivated garden areas. was subdivided
Recommended publications
  • Stink Bug Management with Trap Cropping
    Stink Bug Management With Trap Cropping Dr. Russell F. Mizell, III Professor of Entomology University of Florida 155 Research Rd, Quincy, FL 32351 [email protected] ufinsect.ifas.ufl.edu 4 Major Species of Stink & Leaffooted Bugs In Southeast Euschistus servus Nezara viridula Chinavia hilaris (was Acrosternum hilare) Leptoglossus phyllopus Other Common Phytophagous Stink Bugs Euschistus Thyanta Banasa Oebelus Proxys Brochymena *Piezodorus dpughphoto *Halyomorpha *Megacopta *New invasive species-bad Common Stink Bug Immature Life Stages Stink Bug Morphology By Sex (Euschistus servus) Female Male Other True Bugs Largus succinctus L. Acanthocephala femorata Predacious Stink Bugs & Other Good Bugs From lower left: Alcaeorrhynchus grandis Podisus maculiventris Euthyrhychus floridanus Apiomerus floridensis Phytophagous vs Predacious Plant feeder Predator ‘phytophagous’ Stink Bug Natural Enemies Wasp Egg Parasites & Tachinid Flies Some Commonalities • Overwinter as adults – most species • Polyphagous – >1 host plant species • Food suitability is ‘qualitative’ • Move through the landscape to find • Respond to vegetation structure Some Commonalities • Have common natural enemies • Highly tolerant to insecticides • Relatively little knowledge for some spp. • Other tools not available – big problem! • Incremental approach required =IPM Strategy: Manage Biodiversity via Vegetation-for Profit • Cover crops • Intercrops, polyculture • Shelter belts, hedgerows • Trap crops • Outside orchard influences – crops, etc. • Spatial configurations? Landscape!
    [Show full text]
  • Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America North of Mexico with a Key to Species
    Zootaxa 2835: 30–40 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America north of Mexico with a key to species J. E. McPHERSON1, RICHARD J. PACKAUSKAS2, ROBERT W. SITES3, STEVEN J. TAYLOR4, C. SCOTT BUNDY5, JEFFREY D. BRADSHAW6 & PAULA LEVIN MITCHELL7 1Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, USA. E-mail: [email protected] 2Department of Biological Sciences, Fort Hays State University, Hays, Kansas 67601, USA. E-mail: [email protected] 3Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA. E-mail: [email protected] 4Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Illinois 61820, USA. E-mail: [email protected] 5Department of Entomology, Plant Pathology, & Weed Science, New Mexico State University, Las Cruces, New Mexico 88003, USA. E-mail: [email protected] 6Department of Entomology, University of Nebraska-Lincoln, Panhandle Research & Extension Center, Scottsbluff, Nebraska 69361, USA. E-mail: [email protected] 7Department of Biology, Winthrop University, Rock Hill, South Carolina 29733, USA. E-mail: [email protected] Abstract A review of Acanthocephala of America north of Mexico is presented with an updated key to species. A. confraterna is considered a junior synonym of A. terminalis, thus reducing the number of known species in this region from five to four. New state and country records are presented. Key words: Coreidae, Coreinae, Acanthocephalini, Acanthocephala, North America, review, synonymy, key, distribution Introduction The genus Acanthocephala Laporte currently is represented in America north of Mexico by five species: Acan- thocephala (Acanthocephala) declivis (Say), A.
    [Show full text]
  • Hemiptera- Heteroptera) En México, Con Un Listado De Las Especies Conocidas Anales Del Instituto De Biología
    Anales del Instituto de Biología. Serie Zoología ISSN: 0368-8720 [email protected] Universidad Nacional Autónoma de México México Mayorga MARTÍNEZ, Ma. Cristina Revisión genérica de la familia Cydnidae (Hemiptera- Heteroptera) en México, con un listado de las especies conocidas Anales del Instituto de Biología. Serie Zoología, vol. 73, núm. 2, julio-diciembre, 2002, pp. 157-192 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=45873203 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 73(2): 157-192. 2002 Revisión genérica de la familia Cydnidae (Hemiptera- Heteroptera) en México, con un listado de las especies conocidas MA. CRISTINA MAYORGA MARTÍNEZ* Resumen. Se revisa la familia Cydnidae (Hemiptera-Heteroptera) para México, representada por 12 géneros: Amnestus Dallas, Cyrtomenus Amyot & Serville, Dallasiellus Berg, Ectinopus Dallas, Melanaethus Uhler, Microporus Uhler, Pangaeus Stål, Prolobodes Amyot & Serville, Rhytidoporus Uhler, Tominotus Mulsant & Rey, Scaptocoris Perty, Sehirus Amyot & Serville, pertenecientes a cuatro subfamilias: Amnestinae, Cydninae Scaptocorinae, Sehirinae; se incluyen datos de distribución de cada
    [Show full text]
  • WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W.
    [Show full text]
  • The Metathoracic Scent Gland of the Leaf-Footed Bug, Leptoglossus Zonatus
    Journal of Insect Science: Vol. 13 | Article 149 Gonzaga-Segura et al. The metathoracic scent gland of the leaf-footed bug, Leptoglossus zonatus J. Gonzaga-Segura1a, J. Valdez-Carrasco2b, V. R. Castrejón-Gómez1c* 1Becario COFAA. Laboratorio de Ecología Química de Insectos. Departamento de Interacciones Planta-Insecto. Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. Carretera Yautepec, Jojutla, Km. 6 Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos, Mexico, C.P. 62731 2Laboratorio de Morfología de Insectos. Colegio de Posgraduados en Ciencias Agrícolas Campus Montecillo. Car- retera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, C.P. 56230 Abstract The metathoracic scent gland of 25-day-old adults of both sexes of the leaf-footed bug, Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), are described based on optical microscopy analysis. No sexual dimorphism was observed in the glandular composition of this species. The gland is located in the anteroventral corner of the metathoracic pleura between the middle and posterior coxal pits. The opening to the outside of the gland is very wide and permanently open as it lacks a protective membrane. In the internal part, there is a pair of metathoracic glands that consist of piles of intertwined and occasionally bifurcated cellular tubes or columns. These glands discharge their pheromonal contents into the reservoir through a narrow cuticular tube. The reservoir connects with the vestibule via two opposite and assembled cuticular folds that can separate muscularly in order to allow the flow of liquid away from the insect. The external part consists of an ostiole from which the pheromone is emitted.
    [Show full text]
  • An Invasive Species: Leptoglossus Occidentalis (Heidemann) How Does It Affect Forestry Activities?
    Kastamonu Univ., Journal of Forestry Faculty, 2017, 17 (3): 531-542 Research Note IFS 2016, Special Issue Doi:10.17475/kastorman.292220 An invasive species: Leptoglossus occidentalis (Heidemann) how does it affect forestry activities? Salih PARLAK Bursa Technical University, Faculty of Forestry, Bursa, TURKEY [email protected] Received Date: 14.02.2017 Accepted Date: 09.06.2017 Abstract Aim of study: Leptoglossus occidentalis which is first identified by Heidemann at North America in 1910 spread quickly after WW II. Although it was first seen in 1999 in Europe has swept the continent in 10 years. First damage observation in Turkey reported in Kozak Basin of Bergama on cones of stone pine trees which has valuable edible seeds. The seed yield loss started in 2005 and reached to a peak in 2009. In addition to high early age conelet loss, rate of emptiness of cones has sometimes reached to 90 %. The bug causes decrement in seed formation and seed germination ability significantly by causing early stage conelet loss and destroying endosperm parts of mature cones. In respect of forestry activities decrement of seed resources caused due to bug damage will have negative impact on natural regeneration activities in Turkey and probably will end in failure. In this study, it was aimed to determine the severity of damage caused by the collecting of cone samples from the stone pine forests in our country. Area of study: Without making any discrimination either planted or natural or any altitude or any aspect, stone pine cones have been collected from 42 localities which are distributed all around Turkey.
    [Show full text]
  • Lepidoptera:Pyralidae) in Florida
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2009 The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida Kristen Erica Sauby Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Sauby, Kristen Erica, "The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida" (2009). Theses and Dissertations. 4323. https://scholarsjunction.msstate.edu/td/4323 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences in the Department of Biological Sciences Mississippi State, Mississippi August 2009 Copyright by Kristen Erica Sauby 2009 THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby Approved: Christopher P. Brooks Richard L. Brown Assistant Professor of Biological Sciences Professor of Entomology (Director of Thesis) (Committee Member) Gary N. Ervin Gary N. Ervin Associate Professor of Biological Sciences Graduate Coordinator of the
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • A THESIS for the DEGREE of DOCTOR of PHILOSOPHY By
    A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Systematic review of subfamily Phylinae (Hemiptera: Miridae) in Korean Peninsula with molecular phylogeny of Miridae By Ram Keshari Duwal Program in Entomology Department of Agricultural Biotechnology Seoul National University February, 2013 Systematic review of subfamily Phylinae (Hemiptera: Miridae) in Korean Peninsula with molecular phylogeny of Miridae UNDER THE DIRECTION OF ADVISER SEUNGHWAN LEE SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF SEOUL NATIONAL UNIVERSIITY By Ram Keshari Duwal Program in Entomology Department of Agricultural Biotechnology Seoul National University February, 2013 APRROVED AS A QUALIFIED DISSERTATION OF RAM KESHARI DUWAL FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY THE COMMITTEE MEMBERS CHAIRMAN Si Hyeock Lee VICE CHAIRMAN Seunghwan Lee MEMBER Young-Joon Ahn MEMBER Yang-Seop Bae MEMBER Ki-Jeong Hong ABSTRACT Systematic review of subfamily Phylinae (Hemiptera: Miridae) in Korean Peninsula with molecular phylogeny of Miridae Ram Keshari Duwal Program of Entomology, Department of Agriculture Biotechnology The Graduate School Seoul National University The study conducted two themes: (1) The systematic review of subfamily Phylinae (Heteroptera: Miridae) in Korean Peninsula, with brief zoogeographic discussion in East Asia, and (2) Molecular phylogeny of Miridae: (i) Higher group relationships within family Miridae, and (ii) Phylogeny of subfamily Phylinae. In systematic review a total of eighty four species in twenty eight genera of Phylines are recognized from the Korean Peninsula. During this study, twenty new reports including six new species were investigated; and purposed a synonym and revised recombination. Keys to genera and species, diagnosis, descriptions including male and female genitalia, illustrations and short biological notes are provided for each of the species.
    [Show full text]
  • Occurrence of Arthropod Pests Associated with Brassica Carinata and Impact of Defoliation on Yield
    Received: 1 October 2020 | Accepted: 18 November 2020 DOI: 10.1111/gcbb.12801 ORIGINAL RESEARCH Occurrence of arthropod pests associated with Brassica carinata and impact of defoliation on yield Jessica M. Baldwin1 | Silvana V. Paula-Moraes1 | Michael J. Mulvaney2 | Robert L. Meagher3 1West Florida Research and Education Center, Department of Entomology and Abstract Nematology, University of Florida, Jay, Brassica carinata has the potential to become an economical biofuel winter crop FL, USA 2 in the Southeast U.S. An IPM program is needed to provide management recom- West Florida Research and Education B. carinata Center, Department of Agronomy, mendations for in the region. This study serves as the first steps in the University of Florida, Jay, FL, USA developing IPM tactics documenting pest occurrence, pest position within the can- 3Agricultural Research Service, United opy, and the impact of defoliation on B. carinata yield. The study was performed States Department of Agriculture, in Jay, FL, during the 2017–2018 and 2018–2019 winter/spring crop seasons. Pest Gainesville, FL, USA species in B. carinata were documented by plant inspection within 16 genotypes Correspondence of B. carinata, and the presence of insect pests in three canopy zones (upper, me- Silvana V. Paula-Moraes, West Florida dium, and lower canopy) was documented. The defoliation impact on B. carinata Research and Education Center/IFAS/ University of Florida, 4253 Experiment was evaluated by artificial defoliation. Five levels of defoliation (2017–2018 crop Dr., Hwy. 182, Jay, FL 32565, USA. season: 0%, 5%, 25%, 50%, and 100%; 2018–2019 crop season: 0%, 50%, 75%, 90%, Email: [email protected] and 100%) were artificially applied during vegetative, flowering, and pod formation Funding information stages of the commercial cultivar “Avanza64.” During the 2018–2019 crop season, National Institute of Food and two experiments were performed, a one-time defoliation event and continuous defo- Agriculture, U.S.
    [Show full text]
  • Wildflowers and Other Herbaceous Plants at LLELA
    Wildflowers and other herbaceous plants at LLELA Common Name Scientific Name Observed Abundance Yarrow Achillea millefolium C Prairie Agalinis Agalinis heterophylla C Mud Plaintain Alisma subcordatum U Wild Onion Allium canadense A Amaranth Amaranthus rudis U Western Ragweed Ambrosia psilostachya C Giant Ragweed Ambrosia trifida A Valley Redstem Ammannia coccinea C Broomweed Amphiachyris dracunculoides C Texas Bluestar Amsonia tabernaemontana U Tenpetal Thimbleweed Anemone berlandieri C Prickly Poppy Argemone polyanthemos R Green‐Dragon Arisaema dracontium R Texas Milkweed Asclepias texana C Butterfly Milkweed Asclepias tuberose R Green Milkweed Asclepias viridis C Drummond’s Aster Aster drummondii U Heath Aster Aster ericoides C Annual Aster Aster subulatus C Western Daisy Astranthium integrifolium R Water Fern Azolla caroliniana C Water Hyssop Bacopa monnieri U India Mustard Brassica juncea U* False Boneset Brickellia eupatorioides U Corn Gromwell Buglossoides arvensis C* Wine Cup Callirheo involucrate C Square‐bud Sundrops Calylophus berlandieri R Shepherd’s Purse Capsella bursa‐pastoris U* Nodding Thistle Carduus nutans U* Indian Paintbrush Castilleja indivisa C Basket Flower Centaurea americana C Ladybird’s Centaury Centaurium texense C Sticky Chickweed Cerastium glomeratum C Partridge Pea Chamaecrista fasciculata A Spotted Sandmat Chamaescyce maculata R Small Matted Sandmat Chamaesyce serpens U Hairy Golden Aster Chrysopsis pilosa U Horrid Thistle Cirsium horridulum U Texas Thistle Cirsium texanum C Bull Nettle Cnidoscolus texanus
    [Show full text]
  • Damage to Common Plumbing Materials Caused by Overwintering Leptoglossus Occidentalis (Hemiptera: Coreidae)
    492 Damage to common plumbing materials caused by overwintering Leptoglossus occidentalis (Hemiptera: Coreidae) Sarah L. Bates1 Department of Entomology, New York State Agricultural Experiment Station, Cornell University, 630 West North Street, Geneva, New York 14456, United States of America Bates496 The western conifer seed bug, Leptoglossus Several factors suggested that L. occidentalis occidentalis Heidemann (Hemiptera: Coreidae), may have caused the holes. First, all partial is a polyphagous pest of coniferous trees holes began at the outer surface of the pipe and (Hedlin et al. 1981). Native to western North extended inward, indicating that the holes were America, the seed bug has expanded its range initiated from the outer surface. Second, the di- to include eastern Canada and the United States ameter of the holes was consistent with the di- (McPherson et al. 1990; Gall 1992; Marshall ameter of seed bug stylets (approximately 1992; Ridge-O’Connor 2001; Bates 2002) and 30 µm) (PEX is elastic, hence any observed was recently introduced into Europe (Taylor et hole is expected to be smaller than the caus- al. 2001). Both adults and nymphs feed by in- ative agent). Third, no holes or similar damage serting their stylets into cones and digesting the were observed in PEX pipe located in subfloors contents of developing seeds, and they can or other sealed areas that were inaccessible to cause serious economic losses in high-value seed overwintering bugs. orchards (Strong et al. 2001; Bates et al. 2002; To determine whether L. occidentalis can Bates and Borden 2005). In late summer and damage PEX tubing, adult seed bugs were col- early fall, L.
    [Show full text]