Patient and Billing Information (Please Use Name Printed on Insurance Card) Last Name First Name M.I

Total Page:16

File Type:pdf, Size:1020Kb

Patient and Billing Information (Please Use Name Printed on Insurance Card) Last Name First Name M.I Schedule Adherence Specialist Suggestion: 1. New/Initial Evaluation/Return Magnolia Medical Group | CLIA # 06D2121590 | NPI# 1043769862 after 2 months. th 2. Stabilizing/Weekly/Possible Laboratory Address: 10515 E 40 Ave, STE 115 Denver, CO 80239 th missed appts./Relapsed Office Address: 10515 E 40 Ave, STE 115 Denver, CO80239 3. Maintenance/Monthly/2x Phone: (303) 209-5115| Fax: (720) 638-5562| Email: [email protected] | Website: www.magnoliamed.com monthly/ No missed appts. Patient and Billing Information (Please use name printed on insurance card) Last Name First Name M.I. S.S.N. / Patient ID D.O.B. Street Address City State Zip Phone Gender Insurance Provider Policy # Group # Billing (Select One) Private Insurance Client Bill Write in ICD-10 Diagnosis Codes Medicare Medicaid Self-Pay Workers Comp Patient Release and Consent (Please attach copy of patient demographics and front and back of insurance card) Consent / Insurance Release: I voluntarily consent to the collection and testing of my specimen and certify that the specimen identified on this form is my own; it is fresh and has not been adulterated in any manner. I certify that the information provided on this form and on the specimen container is accurate. I authorize my insurance benefits to be paid directly to Magnolia Medical Group, for service I receive. I acknowledge that the lab may be an out-of-network facility within my insurance. I am also aware that in some circumstances my insurance will send the payment directly to me for the service provided. If this occurs, I agree to endorse the insurance check and forward it to the lab within 30 days of receipt. Failure to do so could result in my account being forwarded to collections. I agree to be financially responsible for these tests. I authorize the laboratory to release the results of this testing to the ordering facility. Patient Signature Date Urine Sample Screening and/or Confirmation Test Orders All Urine Samples Will Be Tested for Specimen Validity (Validity Includes: Creatinine, Oxidants, and pH) 3 4 Confirmation Testing by Generic Name, Metabolites Included if Available (LC-MS/MS) See Back for Full Metabolites List Mark to Order Confirmation Testing and if Prescribed to Patient ( are Illicit and/or Not Prescribed) Panels are bolded and may contain 1 or more drugs. If a panel is selected, all drugs listed below the panel name will also be tested. Temperature must be noted by the collector at collection time and written in the space provided. Alcohol Biomarkers Benzodiazepines Gabapentin Opioids and Opiate Analogs EtG Alprazolam Dextromethorphan EtS Aminoflunitrazepam Heroin Levorphanol Clonazepam 6-MAM Naloxone Amphetamines Diazepam Naltrexone Amphetamine Lorazepam Ketamine Methamphetamine Nordiazepam Oxycodone Oxazepam Methadone Oxycodone Antidep., Not Other. Spec. Temazepam Oxymorphone Bupropion Buprenorphine MDA Pregabalin Antidep., Serotonergic MDEA Citalopram Cannabinoids, Natural MDMA Sedative Hypnotics Fluoxetine THC-COOH Methylphenidate Zolpidem COOH Sertraline Mitragynine Cocaine Skeletal Muscle Relaxants Antidep., Tricyclic/Cyclical Benzoylecgonine Opiates Panel Carisoprodol Amitryiptyline Codeine Cyclobenzaprine Nortriptyline Fentanyls Dihydrocodeine Meprobamate Fentanyl Hydrocodone Barbiturates Sufentanil Hydromorphone Tramadol Butalbital Morphine Provider Order: 1. New/Initial Evaluation/Return after 2 months. 2. Stabilizing/Weekly/Possible missed appts./Relapsed. 3. Maintenance/Monthly/2x Monthly/No Missed Appts. Full Confirmation Testing 5 (Full Confirmation Includes All Confirmation Tests Listed Above Plus Metabolites Listed on Back) Provider Information Specimen Collection Information Additional Physician Requests / Notes: Date Collected Time Collected Temperature Provider Account Name (Print) Magnolia Medical Street Address City State Zip For Laboratory Use Only 1850 Race St Denver CO 80206 Received By Date Received Accession # Ordering Provider Name (Print) Ordering Provider Signature SOF Laboratory Requisition Form Urine Toxicology Front Revised: August 6, 2019 Magnolia Medical Group | CLIA # 06D2121590 | NPI# 1043769862 Laboratory Address: 10515 E 40th Ave, STE 115 Denver, CO 80239 Office Address: 10515 E 40th Ave, STE 115 Denver, CO80239 Phone: (303) 209-5115| Fax: (720) 638-5562| Email: [email protected] | Website: www.magnoliamed.com References from Front 1. Presumptive testing (screening by drug family) utilizes immunoassay and is a qualitative test that reports a positive or negative result (no numerical concentration). Confirmation by LC-MS/MS should be ordered separately ONLY if the healthcare provider deems it necessary to have information that presumptive testing alone will not provide (e.g. where the provider desires to test at levels below the cutoff for the presumptive test, when specific drug identification and numerical quantification is needed, or where cross-reactivity to other medications is a concern). Presumptive testing cannot be performed at the lab if Point-of-Care (POC) screening has already marked. 2. reening (IA). 3. Confirmation testing offers specific drug identification by a quantitative LC-MS/MS test and reports a numerical concentration result (e.g. nanograms per milliliter). If selected, there is no initial qualitative immunoassay test or second confirmatory test by an alternative method. This testing should be ordered separately ONLY if the healthcare provider deems it necessary to have information that initial presumptive immunoassay testing will not provide (e.g. where the healthcare provider desires to test at levels below the cutoff for the initial presumptive immunoassay tests, when specific drug identification and quantification may be necessary, or where cross- reactivity to other medications is a concern). 4. Confirmation Panel Test Listing with Metabolites Table: Metabolites are indented below their parent, indicates un-prescribed metabolites that are tested along with the parent analyte, indicates that Magnolia confirms the Metabolite only and not the parent analyte: Alcohol Biomarkers Benzodiazepines Cont. Heroin Opioids and Opiate Analogs EtG Aminoclonazepam 6-MAM Dextromethorphan EtS Diazepam Ketamine Levorphanol Amphetamines Nordiazepam Ketamine Naloxone Methamphetamine Temazepam Norketamine Naltrexone Amphetamine Oxazepam Methadone Oxycodone Antidepressants, Serotonergic Aminoflunitrazepam Methadone Oxycodone Citalopram Lorazepam EDDP Noroxycodone N-Desmethylcitalopram Buprenorphine Methylenedioxyamphetamines Oxymorphone Fluoxetine Buprenorphine MDA Noroxymorphone Sertraline Norbuprenorphine MDEA Pregabalin Antidepressants, Not Other Spec. Cannabinoids, Natural MDMA Pregabalin Bupropion THC-COOH Methylphenidate Sedative Hypnotics Antidepressants, Tricyclic/Cyclicals Cocaine Methylphenidate Zolpidem COOH Amitriptyline Benzoylecgonine Ritalinic Acid Skeletal Muscle Relaxants Nortriptyline Fentanyls Opiates Panel Carisoprodol Barbiturates Fentanyl Codeine Meprobamate Butalbital Norfentanyl Dihydrocodeine Cyclobenzaprine Benzodiazepines Sufentanil Morphine Tramadol Alprazolam Gabapentin Hydrocodone Tramadol Hydroxyalprazolam Gabapentin Norhydrocodone O-Desmethyltramadol Clonazepam Hydromorphone Mitragynine 5. tested. Laboratory Requisition Form Urine Toxicology Back Revised August 6, 2019.
Recommended publications
  • Guidelines for the Forensic Analysis of Drugs Facilitating Sexual Assault and Other Criminal Acts
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Forensic analysis of drugs facilitating sexual assault and other criminal acts United Nations publication Printed in Austria ST/NAR/45 *1186331*V.11-86331—December 2011 —300 Photo credits: UNODC Photo Library, iStock.com/Abel Mitja Varela Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Guidelines for the forensic analysis of drugs facilitating sexual assault and other criminal acts UNITED NATIONS New York, 2011 ST/NAR/45 © United Nations, December 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. List of abbreviations . v Acknowledgements .......................................... vii 1. Introduction............................................. 1 1.1. Background ........................................ 1 1.2. Purpose and scope of the manual ...................... 2 2. Investigative and analytical challenges ....................... 5 3 Evidence collection ...................................... 9 3.1. Evidence collection kits .............................. 9 3.2. Sample transfer and storage........................... 10 3.3. Biological samples and sampling ...................... 11 3.4. Other samples ...................................... 12 4. Analytical considerations .................................. 13 4.1. Substances encountered in DFSA and other DFC cases .... 13 4.2. Procedures and analytical strategy...................... 14 4.3. Analytical methodology .............................. 15 4.4.
    [Show full text]
  • Use of Human Plasma Samples to Identify Circulating Drug Metabolites That Inhibit Cytochrome P450 Enzymes
    1521-009X/44/8/1217–1228$25.00 http://dx.doi.org/10.1124/dmd.116.071084 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:1217–1228, August 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes Heather Eng and R. Scott Obach Pfizer Inc., Groton, Connecticut Received April 19, 2016; accepted June 3, 2016 ABSTRACT Drug interactions elicited through inhibition of cytochrome P450 fractions were tested for inhibition of six human P450 enzyme (P450) enzymes are important in pharmacotherapy. Recently, activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and greater attention has been focused on not only parent drugs CYP3A4). Observation of inhibition in fractions that correspond to inhibiting P450 enzymes but also on possible inhibition of these the retention times of metabolites indicates that the metabolite Downloaded from enzymes by circulating metabolites. In this report, an ex vivo method has the potential to contribute to P450 inhibition in vivo. Using whereby the potential for circulating metabolites to be inhibitors of this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltia- P450 enzymes is described. To test this method, seven drugs and zem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, their known plasma metabolites were added to control human erythro-dihydrobupropion, and threo-dihydrobupropion were iden- plasma at concentrations previously reported to occur in humans
    [Show full text]
  • Aerobic Treatment of Selective Serotonin Reuptake Inhibitors in Landfill Leachate Ove Bergersen1*, Kine Østnes Hanssen2 and Terje Vasskog2,3
    Bergersen et al. Environmental Sciences Europe (2015) 27:6 DOI 10.1186/s12302-014-0035-0 RESEARCH Open Access Aerobic treatment of selective serotonin reuptake inhibitors in landfill leachate Ove Bergersen1*, Kine Østnes Hanssen2 and Terje Vasskog2,3 Abstract Background: Pharmaceuticals used in human medical care are not completely eliminated in the human body and can enter the municipal sewage sludge system and leachate water from landfill both as the parent compound and as their biologically active metabolites. The selective serotonin reuptake inhibitors (SSRIs) have a large potential for unwanted effects on nontarget organisms in the environment. Leachates from active or old closed landfills are often treated with continuous stirring and simple aeration in a pond/lagoon before infiltration into the environment. The aim of this work was to simulate the reduction of five SSRIs (citalopram, fluoxetine, paroxetine, sertraline and fluvoxamine) and three of their metabolites (desmethylcitalopram, didesmethylcitalopram and norfluoxetine) during aerobic treatment of leachate from landfills. This landfill leachate-simulation experiment was performed to see what happens with the pharmaceuticals during aerated treatment and continuous stirring of landfill leachate for 120 h. It is important to establish whether different pollutants such as pharmaceuticals can be removed (oxidized or otherwise degraded) or not before infiltration into the environment. Results: All the SSRIs had a significant concentration reduction during the aeration treatment process. Total SSRI concentrations were reduced significantly during aerobic treatment, and the individual SSRIs were reduced by 89% to 100% after 120 h. Among the high-concentration samples, fluoxetine (10 mg L−1) was the least degraded with 93% concentration reduction.
    [Show full text]
  • Individual Patient & Medication Factors That Invalidate Morphine
    Individual Patient & Medication Factors that Invalidate Morphine Milligram Equivalents Presented on June 7-8, 2021 at FDA Collaborative with various Federal Government Agency Stakeholders Jeffrey Fudin, PharmD, FCCP, FASHP, FFSMB Clinical Pharmacy Specialist & PGY2 Pain Residency Director Stratton VAMC, Albany NY Adjunct Associate Professor Albany College of Pharmacy & Health Sciences, Albany NY Western New England University College of Pharmacy, Springfield MA President, Remitigate Therapeutics, Delmar NY Disclosures Affiliation Role/Activities Abbott Laboratories Speaking, non-speakers bureau AcelRx Pharmaceuticals Acute perioperative pain (speakers bureau, consulting, advisory boards) BioDelivery Sciences International Collaborative publications, consulting, advisory boards Firstox Laboratories Micro serum testing for substances of abuse (consulting) GlaxoSmithKline (GSK) Collaborative non-paid poster presentations) Hisamitsu America Inc Advisory Board Hikma Pharmaceuticals Advisory Board Scilex Pharmaceuticals Collaborative non-paid publications Salix Pharmaceuticals Speakers bureau, consultant, advisory boards Torrent Pharmaceuticals Lecture, non-speakers bureau Learning Objectives At the completion of this activity, participants will be able to: 1. Explain opioid conversion and calculation strategies when developing a care plan for patients with chronic pain. 2. Assess patient-specific factors that warrant adjustment to an opioid regimen. 3. Identify important drug interactions that can affect opioid serum levels. 4. Describe how pharmacogenetic differences can affect opioid efficacy, toxicity, and tolerability. Not All Opioids are Created Equally Issues with MEDD & Opioid Conversion1-4 › Pharmacogenetic variability › Drug interactions › Lack of universal morphine equivalence › Specific opioids that should never have an MEDD – Methadone, Buprenorphine, Tapentadol, Tramadol 1. Fudin J, Marcoux MD, Fudin JA. Mathematical Model For Methadone Conversion Examined. Practical Pain Management. Sept. 2012. 46-51. 2. Donner B, et al.
    [Show full text]
  • Prescription Drug Management
    Check out our new site: www.acllaboratories.com Prescription Drug Management Non Adherence, Drug Misuse, Increased Healthcare Costs Reports from the Centers for DiseasePrescription Control and Prevention (CDC) say Drug deaths from Managementmedication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription Nondrugs. Adherence,1 Drug Misuse, Increased Healthcare Costs The CDC analysis found that nearly 40,000 drug overdose deaths were reported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths from illegal street drugs. Abuse of painkillers like ReportsOxyContin from and the VicodinCenters forwere Disease linked Control to the and majority Prevention of the (CDC) deaths, say deaths from according to the report.1 medication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription drugs. 1 A health economics study analyzed managed care claims of more than 18 million patients, finding that patients undergoing opioid therapyThe CDCfor chronic analysis pain found who that may nearly not 40,000 be following drug overdose their prescription deaths were regimenreported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths have significantly higher overall healthcare costs. from illegal street drugs. Abuse of painkillers like OxyContin and Vicodin were linked to the majority of the deaths, according to the report.1 ACL offers drug management testing to provide information that can aid clinicians in therapy and monitoring to help improve patientA health outcomes.
    [Show full text]
  • LC-MS for Pain Management Support
    LC-MS for Pain Management Support Gwen McMillin, PhD, DABCC(CC,TC) University of Utah ARUP Laboratories Outline .Overview of drug testing, as a component of the therapeutic plan, in the management of chronic pain .A mini-SWOT analysis for application of LC- MS to pain management drug testing .Considerations for optimizing utility of LC-MS results Drug testing in pain management . Baseline testing, before initiating opioid therapy . Routine testing . Periodic, based on patient risk assessment . To evaluate changes . Therapeutic plan (drugs, formulations, dosing) . Clinical response (poor pain control, toxicity) . Clinical events (disease, surgery, pregnancy) . Patient behavior Objectives of drug testing Non- Detect and encourage Adherence appropriate drug use Detect and discourage Adherence inappropriate drug use Traditional approach . Immunoassay-based screen Screen . Confirm screen positive results with mass spectrometric method (GC-MS, LC-MS) Not appropriate for pain management Confirm + . Reflex testing leads to unnecessary expenses if the results are consistent with expectations, or if results are not used to make patient care decisions Confirm + . Confirmation of negative results may be more important than confirmation of positive results . Immunoassay-based screens may not be available Confirm + for specimens and drugs of interest Drugs monitored for pain management represent ~25% of “Top 200” prescriptions filled, 2011 .Analgesics .Anxiolytics, muscle . Hydrocodone (#1, 2, 14, 139) relaxants . Oxycodone (#45, 48, 121, 129, 196)
    [Show full text]
  • An Active Metabolite of Hydrocodone
    JPET Fast Forward. Published on August 30, 2013 as DOI: 10.1124/jpet.113.207548 JPET FastThis articleForward. has not Publishedbeen copyedited on and August formatted. 30, The 2013final version as DOI:10.1124/jpet.113.207548 may differ from this version. JPET #207548 In vivo Activity of Norhydrocodone: An Active Metabolite of Hydrocodone Downloaded from Dipesh M. Navani and Byron C. Yoburn Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences jpet.aspetjournals.org St. John's University 8000 Utopia Parkway Queens, NY 11439 at ASPET Journals on October 3, 2021 1 Copyright 2013 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on August 30, 2013 as DOI: 10.1124/jpet.113.207548 This article has not been copyedited and formatted. The final version may differ from this version. JPET #207548 Running Title: Norhydrocodone: An Active Metabolite of Hydrocodone. Corresponding author: Byron C. Yoburn, Ph.D. Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University 8000 Utopia Parkway Downloaded from Queens, NY 11439 Tel: 718-990-1623 jpet.aspetjournals.org Fax: 718-990-6036 Email: [email protected] at ASPET Journals on October 3, 2021 Number of text pages: 35 Number of tables: 3 Number of figures: 5 Number of references: 34 Number of words in the abstract: 248 Number of words in the introduction: 531 Number of words in the discussion: 863 Abbreviations: HYC, Hydrocodone; HYM, Hydromorphone; NHYC, Norhydrocodone; CYP, Cytochrome P450; DMAGO, [D-Ala2,N-MePhe4,Gly-ol5]Enkephalin; DPDPE, [D-Pen2,D- Pen5]Enkephalin; CL, Confidence limit.
    [Show full text]
  • 169 2016 Interim Meeting Science and Public Health - 1
    169 2016 Interim Meeting Science and Public Health - 1 REPORTS OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH The following reports, 1–4, were presented by S. Bobby Mukkamala, MD, Chair: 1. URINE DRUG TESTING Reference committee hearing: see report of Reference Committee K. HOUSE ACTION: RECOMMENDATIONS ADOPTED AS FOLLOWS REMAINDER OF REPORT FILED See Policies H-95.985 and D-120.936 INTRODUCTION Over the past two decades, the rate of opioid prescribing, especially for patients with chronic non-cancer pain, has increased dramatically. It is estimated that between 9.6 and 11.5 million Americans are currently being prescribed long-term opioid therapy.1 The overall increase in prescribing has been associated with a parallel increase in unintentional overdoses and deaths from prescription opioids.2 In 2014, a total of 47,055 drug overdose deaths occurred in the United States; 61% of these involved some type of opioid, including heroin. Overdose deaths from heroin have quadrupled in recent years, and the majority of past year users of heroin report they used opioids in a nonmedical fashion prior to heroin initiation; hence, the availability of pharmaceutical opioids is relevant to the national heroin use and overdose death epidemics. In the most recent available report, benzodiazepines were involved in 31% of the opioid-related overdoses.3 Despite clinical recommendations to the contrary, the rate of opioid and benzodiazepine co-prescribing also continues to rise.3-5 Identifying patients at risk for drug misuse is a challenge. There is no definitive way for physicians to predict which of their patients will develop misuse problems with controlled substances.
    [Show full text]
  • Determination of Antidepressants in Human Plasma by Modified Cloud
    pharmaceuticals Article Determination of Antidepressants in Human Plasma by Modified Cloud-Point Extraction Coupled with Mass Spectrometry El˙zbietaGniazdowska 1,2 , Natalia Korytowska 3 , Grzegorz Kłudka 3 and Joanna Giebułtowicz 3,* 1 Łukasiewicz Research Network, Industrial Chemistry Institute, 8 Rydygiera, 01-793 Warsaw, Poland; [email protected] 2 Department of Bioanalysis and Drugs Analysis, Doctoral School, Medical University of Warsaw, 61 Zwirki˙ i Wigury, 02-091 Warsaw, Poland 3 Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland; [email protected] (N.K.); [email protected] (G.K.) * Correspondence: [email protected] Received: 5 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Cloud-point extraction (CPE) is rarely combined with liquid chromatography coupled to mass spectrometry (LC–MS) in drug determination due to the matrix effect (ME). However, we have recently shown that ME is not a limiting factor in CPE. Low extraction efficiency may be improved by salt addition, but none of the salts used in CPE are suitable for LC–MS. It is the first time that the influences of a volatile salt—ammonium acetate (AA)—on the CPE extraction efficiency and ME have been studied. Our modification of CPE included also the use of ethanol instead of acetonitrile to reduce the sample viscosity and make the method more environmentally friendly. We developed and validated CPE–LC–MS for the simultaneous determination of 21 antidepressants in plasma that can be useful for clinical and forensic toxicology. The selected parameters included Triton X-114 concentration (1.5 and 6%, w/v), concentration of AA (0, 10, 20 and 30%, w/v), and pH (3.5, 6.8 and 10.2).
    [Show full text]
  • Analysis of Oxycodone and Its Metabolites-Noroxycodone, Oxymorphone, and Noroxymorphone in Plasma by LC/MS with an Agilent ZORBAX Stablebond SB -C18 LC Column
    Analysis of Oxycodone and Its Metabolites-Noroxycodone, Oxymorphone, and Noroxymorphone in Plasma by LC/MS with an Agilent ZORBAX StableBond SB -C18 LC Column Application Note Pharmaceutical Authors Abstract Linda L. Risler Oxycodone and its oxidative metabolites (noroxycodone, oxymorphone, and Fred Hutchinson Cancer Research noroxymorphone) were analyzed by high performance liquid chromatography/mass Center, spectrometry (HPLC/MS), coupled with chromatographic separation by an Agilent Seattle, WA 98109 ZORBAX Rapid Resolution High Throughput (RRHT) StableBond SB-C18 column. The method used an ammonium acetate/acetonitrile gradient with detection by a mass Anne E. Mack spectrometer in electrospray mode with positive polarity. Spiked human plasma Agilent Technologies, Inc. samples underwent solid phase extraction (SPE) prior to LC/MS analysis. This method provided good linearity (R 2 > 0.9900) and reproducibility (< 10% difference between duplicates) for all compounds, while increasing productivity with a fast, efficient analysis and minimal solvent usage. Introduction Experimental Oxycodone was developed in 1916 as an opioid analgesic An Agilent 1100 Series LC/MS was used for this work: medication intended to replace the far too addictive analgesic at the time, heroin. Today, oxycodone is a Schedule II drug in • Agilent G1312A Binary Pump. Mobile phase A: 20 mM the US, which means, while it has proven medical uses, it is ammonium acetate, pH 4.0 and B: acetonitrile. Flow rate still considered highly addictive with the possibility of both was 0.300 mL/min. Hold 5% B for 2.33 minutes, then physical and psychological dependencies. Figure 1 shows increase B from 5% to 20% from 2.33 to 4.33 minutes, stop oxycodone and its metabolic scheme, yielding noroxycodone, time is 6 minutes, and post time is 4 minutes.
    [Show full text]
  • New High-Resolution Targeted Opioid Screen Superior Sensitivity and Specificity to Evaluate Adherence to Prescribed Opioid Therapy
    4/7/2020 New High-Resolution Targeted Opioid Screen Superior Sensitivity and Specificity to Evaluate Adherence to Prescribed Opioid Therapy © MFMER | slide-1 Presenter: Paul J. Jannetto, PhD Associate Professor of Laboratory Medicine and Pathology Director, Clinical and Forensic Toxicology, Clinical Mass Spectrometry Lab and Metals Lab Department of Laboratory Medicine and Pathology at Mayo Clinic, Rochester, Minnesota © MFMER | slide-2 1 4/7/2020 Disclosures • None © MFMER | slide-3 Objectives • Describe the clinical utility and limitations of the following urine drug tests used to support pain management/monitoring of controlled substances: • Traditional opiate immunoassays • Mass spectrometry-based targeted screening assays • Define the metabolic profiles of opioids commonly used in pain management and discuss how to interpret screening/definitive test results. © MFMER | slide-4 2 4/7/2020 Opioid Crisis in America1 • Sale of opioid pain relievers (OPR) quadrupled between 1999 and 2010 • Enough OPR were prescribed in 2010to medicate every American adult around the clock (every 4 hours) for a month • Large number of patients (>40%) still report inadequate treatment of pain • Medical examiner reports also continue to show an increase in opioid related fatalities • Chronic pain costs up to $635 billion/year in medical treatment and lost productivity © MFMER | slide-5 Why Do Clinicians Use Urine Drug Tests (UDT) to Monitor Opioids? • Clinical Practice Guidelines: • American Society of Interventional Pain Physicians (ASIPP) Guidelines2,3
    [Show full text]
  • Presentation Slides (PDF)
    Urine toxicology testing to support pain management and treatment for substance use disorder Yifei Yang, PhD, DABCC Medical Director, Toxicology, ARUP Laboratories Assistant Professor, University of Utah Learning Objectives and Presentation Outline • Describe the general analytical workflow of urine drug testing • Understand the testing approaches for medication compliance in pain management and treatment for substance use disorder (SUD) settings • Recognize the utilities and limitations of qualitative and quantitative test results • Discuss case-based unexpected urine drug testing results and considerations for results interpretation Urine toxicology testing to support controlled substance prescription and monitoring • Pain management and SUD treatment • Long-term prescription of controlled substances • Various opiates: hydrocodone, oxycodone, etc. at various doses • Buprenorphine, with naloxone (Suboxone) • Co-medication with benzodiazepines, heroin, and other opiates can increase risk for over-dose • Urine toxicology testing is recommended: • Baseline testing prior to prescription • Annual monitoring (minimal), interval up to clinician discretion • Detect undisclosed medication use • Confirm expected medication use CDC Guideline for Prescribing Opioids for Chronic Pain. (2016) Centers for Disease Control and Prevention. Urine toxicology testing is used to confirm the presence of prescribed medications • Drug presence prevalence: • High positivity rate • Patients are mostly taking medications • Appropriate positive cutoffs are needed
    [Show full text]