Magnetic Quantum Coherence Effect in Ni4 Molecular Transistors

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Quantum Coherence Effect in Ni4 Molecular Transistors Magnetic quantum coherence effect in Ni4 molecular transistors Gabriel Gonzalez´ 1, ∗ and Michael N. Leuenberger2, 3, y 1Departamento de Matematicas´ y F´ısica, Instituto Tecnologico´ y de Estudios Superiores de Occidente, Periferico´ Sur Manuel Gomez´ Mor´ın 8585 C.P. 45604, Tlaquepaque, Jal., MEXICO 2NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA, 3Department of Physics, University of Central Florida, P.O. Box 162385, Orlando, FL 32816-2385, USA (Dated: November 1, 2019) We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances. PACS numbers: 73.63.Nm, 75.50.Xx, 75.45.+j, 05.60.Gg Keywords: Single molecule magnets, Magnetic quantum tunneling, Landauer formula INTRODUCTION spin ground state of Ni4 is S = 4. The article is organized as follows. First we will start with the model Hamiltonian of the Ni4 molecular transistor taking into Single-molecule magnets (SMMs), such as Mn12 (see Refs. account the magnetic quantum coherence of the two lowest 1, 2) and Fe8 (see Refs. 3, 4), have become the focus of ground spin states of the SMM. Then we will solve this model intense research since experiments on bulk samples demon- Hamiltonian and use the solution to calculate the conductance strated the magnetic quantum tunneling of a single magnetic through the molecular transistor as a function of the applied moment on a macroscopic scale. These molecules are char- bias by means of the Landauer formalism at zero temperature acterized by a large total spin, a large magnetic anisotropy for the SMM Ni4. The conclusions are summarized in the last barrier, and anisotropy terms which allow the spin to tunnel section. through the barrier. It is well known that magnetic quantum coherence (MQC) is realized when the SMM tunnels several times between degenerate spin states with opposite spin pro- MODEL HAMILTONIAN jections on the magnetic easy axis before the coherence is destroyed by the environment. Evidence of MQC has been The total Anderson-type Hamiltonian of a system formed reported for various superconducting systems and for antifer- by a single-molecule magnet (SMM) attached to two metallic romagnetic nanoclusters. [5–10] leads can be separated into three terms Electronic transport through SMMs offers several unique features with potentially large impact on applications such Htot = Hlead + HSMM + HSMM−lead: (1) as high-density magnetic storage as well as quantum computing.[11, 12] Recent experiments have pointed out the We will consider the leads as a one dimensional linear chain importance of the interference between spin tunneling paths in of sites. Thus, the first term on the right-hand side of Eq. (1) molecules. For instance, measurements of the magnetization is given by, in bulk Fe8 have observed oscillations in the tunnel splitting X X y X X y y ∆s;−s between states Sz = s and −s as a function of a trans- Hlead = σciσciσ −v ciσcjσ + cjσciσ ; verse magnetic field at temperatures between 0:05 K and 0:7 i σ=";# hiji σ=";# K (see Ref. 13, 14). This effect can be explained by the in- (2) arXiv:1208.0963v2 [cond-mat.mes-hall] 1 Jul 2014 y terference between Berry phases associated to spin tunneling where the operator ciσ (ciσ) creates (annihilates) electronic path of opposite windings.[15–19] states in the leads with spin orientation σ ="; #, and energy In this article we investigate coherent magnetic quantum tun- σ. The symbol hiji implies the sum over nearest neighbors. neling in the SMM Ni4 in which the tunneling rate is faster The potential of the wire is taken to be zero and the hopping in than the rate of decoherence and at a temperature at which the wire is v. The on site energies in the leads and in the SMM ∆z tunneling occurs only between the lowest spin states. We have are given by σ = 2 [σz]σσ and "0σ, respectively. ∆z = chosen to study the SMM Ni4 because of its high symmetry gµBHz is the Zeeman energy splitting in the leads where σz (S4) and large tunnel splittings (∼ 0.01K) at zero magnetic is the Pauli matrix.[22] field, which have been confirmed by high frequency EPR and The second term on the right-hand side of Eq. (1) denotes the magnetic relaxation experiments (see Ref. 20, 21). The total SMM part, which can be broken into spin, charging, and gate 2 contributions, SMM Ni4 in order to switch the total spin ground state from S = 4 to S = 9=2 or S = 7=2, the final ground state will be (q) HSMM = Hspin + Ec − q eVg; (3) the result of the exchange interaction between the total spins in the SMM. When the nanomagnet is singly charged and with where Ec denotes the charging energy, q is the number of ex- the application of the longitudinal magnetic field Hz the SMM cess electrons (the charge state of the molecule), and Vg is the will only allow electrons with spin down (up) polarization in electric potential due to an external gate voltage. In the pres- single electron tunneling transport due to spin blockade. If the ence of an external magnetic field, the spin Hamiltonian of the SMM has a total spin ground state of S = 9=2 or S = 7=2, SMM Ni4 reads then there will be transitions from j − 9=2i to |±i and from (q) j − 7=2i to |±i, respectively. For S = 9=2 spin up electrons H = −D S2 + C (S4 + S4 ) − µ gS~ · H~ spin q q;z q q;+ q;− B are transmitted through the SMM, whereas for S = 7=2 spin 2 4 4 1 ∗ down electrons are transmitted through the SMM. The energy = −DqSz + Cq(Sq;+ + Sq;−) − (h?Sq;+ + h?Sq;−) 2 levels as a function of the orientation of the magnetic mo- +hkSq;z; (4)ment is pictorially shown in Figure (1), where the gap between j+ > and |− > has been exaggerated to help visualization of z S = where the easy axis is taken along the direction and q;± the electronSequential transmission tunneling through thethrough SMM transistor. |-4> Sq;x ± iSq;y. The magnetic field components were rescaled We will be using two pairs of spin ground states j ± siq=0 to h? = gµB(Hx + iHy) and hk = gµBHz for the transver- sal and longitudinal parts, respectively, where g = 2:3 denotes j<0 j=0 j>0 the effective gyromagnetic ratio for the giant spin of the SMM −4 s 4 and Dq=0 = 0:75K and Cq=0 = 2:9 × 10 K. The total spin as well as the anisotropy constants D and C depend on t Z q q the charging state of the molecule, i.e. if the SMM is singly (a) 7/2 Sequential7/2 tunneling through |-4> s' 7/2 and doubly charged.[23] The longitudinal magnetic field Hz H z tilts the double potential well favoring those spin projections aligned with the field. At zero magnetic field the spin projec- The red regionj<0 is given by the bias voltage V.j=0 j>0 tions j4i and j − 4i have nearly the same energy and magnetic s 4 Gate voltage Vg is applied in such a way that spin down electrons flow through the SMM. quantum tunneling is possible. Importantly, for an individual Z t Ni4 nanomagnet quantum magnetic tunneling is possible only (b) between states that differ by 4 spin units, i.e. if the selection 0 9/2 rule sq − sq = 4k is satisfied, where k is an integer.[24] The 9/2 s' 9/2 H transverse magnetic field in the xy plane lifts the degeneracy z S ∆ 0 of the eigenstates of q;z by an energy sq ;sq , the so-called The red region is given by the bias voltage V. tunnel splitting, and leads to states that are coherent superpo- FIG. 1: Schematic illustration of tunneling through the SMM tran- Gate voltage Vg is applied in such a way that spin up electrons flow through the SMM. sitions of the eigenstates of Sq;z. Denoting λs;−s as the cou- sistor for s = 7=2 and s = 9=2. The dotted line corresponds to the pling matrix element between the states jsiq=0 and j − siq=0, direct electron path across the SMM transistor. the magnetic quantum coherence in the single molecule mag- net is given by the following effective Hamiltonian and j ± siq=1 for the uncharged and charged SMM, respec- tively. For the sake of clarity, we will denote the charged 0 HMQC = λs;−s (|−si00hsj + jsi00h−sj) : (5) ground states by j ± s i and the uncharged ground states by j ± si. With this notation and by restricting the Hilbert space where λs;−s represents the source of spin flipping. The to the lowest spin doublet of the SMM we can then write down most general coherent superpositions for the two lowest levels the Hamiltonian which represents the interaction of the SMM jsiq=0 and j − siq=0 is given by with the leads q 2 2 0 y 0 ∓∆s;−s + ∆s;−s + λs;−s |−si0 ± λs;−s jsi0 HSMM−lead = −t |±i h−s j c1# + c1# |−s i h±| + |±i = ; 0 y 0 N± |±i h−s j c1" + c |−s i h±| + (6) 1" 0 y 0 where |±i h−s j c−1# + c−1# |−s i h±| + r 0 y 0 q 2 |±i h−s j c−1" + c−1" |−s i h±| (8) 2 2 2 N± = λs;−s + ∓∆s;−s + ∆s;−s + λs;−s : (7) where t is the lead-molecule tunneling amplitude.
Recommended publications
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Phonon Dynamics in a Single Nanomagnet
    ARTICLE https://doi.org/10.1038/s41467-019-10545-x OPEN Strongly coupled magnon–phonon dynamics in a single nanomagnet Cassidy Berk 1, Mike Jaris1, Weigang Yang1, Scott Dhuey2, Stefano Cabrini2 & Holger Schmidt1 Polaritons are widely investigated quasiparticles with fundamental and technological sig- nificance due to their unique properties. They have been studied most extensively in semi- conductors when photons interact with various elementary excitations. However, other fi 1234567890():,; strongly coupled excitations demonstrate similar dynamics. Speci cally, when magnon and phonon modes are coupled, a hybridized magnon–phonon quasiparticle can form. Here, we report on the direct observation of coupled magnon–phonon dynamics within a single thin nickel nanomagnet. We develop an analytic description to model the dynamics in two dimensions, enabling us to isolate the parameters influencing the frequency splitting. Fur- thermore, we demonstrate tuning of the magnon–phonon interaction into the strong coupling regime via the orientation of the applied magnetic field. 1 School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA. 2 Molecular Foundry, University of California Berkeley, 67 Cyclotron Road, Berkeley, CA 94720, USA. Correspondence and requests for materials should be addressed to C.B. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:2652 | https://doi.org/10.1038/s41467-019-10545-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10545-x agnonics is an extremely active research area which ab Mexploits the wave nature of magnons, the quanta of spin Spins waves, in order to advance data storage, communica- tion, and information processing technology.
    [Show full text]
  • Vibrational Coherences in Manganese Single-Molecule Magnets After
    1 Vibrational coherences in manganese single-molecule magnets 2 after ultrafast photoexcitation 3 Florian Liedy1, Robbie McNab1, Julien Eng2, Ross Inglis1, Tom J. Penfold2, Euan K. 4 Brechin1, J. Olof Johansson1,* 5 1EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, 6 Edinburgh, UK 7 2 Chemistry - School of Natural and Environmental Sciences, Newcastle University, 8 Newcastle upon Tyne, NE1 7RU, UK 9 *Email: [email protected] 10 11 Abstract 12 Single-Molecule Magnets (SMMs) are metal complexes with two degenerate magnetic ground 13 states arising from a non-zero spin ground state and a zero-field splitting. SMMs are promising 14 for future applications in data storage, howeVer, to date the ability to manipulate the spins 15 using optical stimulus is lacking. Here, we have explored the ultrafast dynamics occurring after 16 photoexcitation of two structurally related Mn(III)-based SMMs, whose magnetic anisotropy is 17 closely related to the Jahn-Teller distortion, and demonstrate coherent modulation of the axial 18 anisotropy on a femtosecond timescale. Ultrafast transient absorption spectroscopy in solution 19 reVeals oscillations superimposed on the decay traces with corresponding energies 20 around 200 cm−1, coinciding with a vibrational mode along the Jahn-Teller axis. Our results 21 provide a non-thermal, coherent mechanism to dynamically control the magnetisation in 22 SMMs and open up new molecular design challenges to enhance the change in anisotropy in 23 the excited state, which is essential for future ultrafast magneto-optical data storage devices. 24 25 1 1 Single-Molecule Magnets (SMMs), molecules that show magnetic hysteresis below a certain 2 blocking temperature1, show great promise for future applications in data storage devices2-4 3 because their small size and well-defined magnetic properties can reduce the size of data bits 4 and therefore increase storage density.
    [Show full text]
  • Out-Of-Plane Carrier Spin in Transition-Metal Dichalcogenides
    Out-of-plane carrier spin in transition-metal dichalcogenides under electric current Xiao Li ( )a,b,1, Hua Chenc,d,1 , and Qian Niub aCenter for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; bDepartment of Physics, University of Texas at Austin, Austin, TX 78712; cDepartment of Physics, Colorado State University, Fort Collins, CO 80523; and dSchool of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523 Edited by David Vanderbilt, Rutgers, The State University of New Jersey, Piscataway, NJ, and approved June 1, 2020 (received for review July 20, 2019) Absence of spatial inversion symmetry allows a nonequilibrium (16), semiconductor-to-metal transition (17), and valley splitting spin polarization to be induced by electric currents, which, in two- (18, 19). dimensional systems, is conventionally analyzed using the Rashba Two-dimensional van der Waals materials provide a plethora model, leading to in-plane spin polarization. Given that the of simple and powerful platforms for exploring spin-related material realizations of out-of-plane current-induced spin polar- physics (20). In particular, monolayer transition-metal dichalco- ization (CISP) are relatively fewer than that of in-plane CISP, but genides, MX2 (M = V, Mo, W; X = S, Se, Te, etc.), in the important for perpendicular-magnetization switching and elec- 2H phase have both strong SOC and inversion symmetry break- tronic structure evolution, it is highly desirable to search for ing (21–24). While special attention has recently been paid to new prototypical materials and mechanisms to generate the out- the CISP in MX2/graphene bilayer (25) and MX2/ferromagnet of-plane carrier spin and promote the study of CISP.
    [Show full text]
  • Nanomagnetism
    Message from the Director 6 The Very Best of nanoGUNE 8 1 Researchers in Action 10 Nanomagnetism 12 Nanooptics 14 Self-Assembly 16 Nanodevices 18 Electron Microscopy 20 Theory 22 Nanomaterials 24 Nanoimaging 26 2 State-of-the-art Infrastructure 28 3 Scientific Outputs 32 Highlighted publications 34 Conferences, workshops, and schools 56 Invited Talks 58 Seminars 63 ISI Publications 66 Cooperation agreements 72 4 Industry Overview 74 5 Connecting with Society 78 6 Organization and Funding 82 nanoPeople 90 Message from the Director Advances in nanoscience and nanotechnology are nowadays at the heart of the technological development of our soci- ety. Our current ability to observe and control matter at the atomic and molecular scale (the nanoscale) will allow, in the next few decades, the design of new objects and the devel- opment of more efficient and less expensive manufacturing processes in a great variety of industry sectors. At CIC nanoGUNE Consolider, it is our mission to carry out world-class nanoscience research, thus contributing to the creation of the necessary conditions for the Basque Country (and the humanity, in general) to benefit from a wide range of nanotechnologies: confronting new scientific challenges through cooperation with other research and technological agents in the Basque Country and worldwide, building bridges that fill the gap between basic science and technology, as well as promoting high-level training and out- reach activities. In the launching period 2007-2010, we were successful in putting together a state-of-the-art
    [Show full text]
  • Experimental Study of Nanomagnets for Magnetic Quantum
    EXPERIMENTAL STUDY OF NANOMAGNETS FOR MAGNETIC QUANTUM- DOT CELLULAR AUTOMATA (MQCA) LOGIC APPLICATIONS A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillments of the Requirements for the Degree of Doctor of Philosophy by Alexandra Imre, M.S. ______________________________ Wolfgang Porod, Director ______________________________ Gary H. Bernstein, Co-director Graduate Program in Electrical Engineering Notre Dame, Indiana April 2005 EXPERIMENTAL STUDY OF NANOMAGNETS FOR MAGNETIC QUANTUM- DOT CELLULAR AUTOMATA (MQCA) LOGIC APPLICATIONS Abstract By Alexandra Imre Nanomagnets that exhibit only two stable states of magnetization can represent digital bits. Magnetic random access memories store binary information in such nanomagnets, and currently, fabrication of dense arrays of nanomagnets is also under development for application in hard disk drives. The latter faces the challenge of avoiding magnetic dipole interactions between the individual elements in the arrays, which limits data storage density. On the contrary, these interactions are utilized in the magnetic quantum- dot cellular automata (MQCA) system, which is a network of closely-spaced, dipole- coupled, single-domain nanomagnets designed for digital computation. MQCA offers very low power dissipation together with high integration density of functional devices, as QCA implementations do in general. In addition, MQCA can operate over a wide temperature range from sub-Kelvin to the Curie temperature. Information propagation and inversion have previously been demonstrated in MQCA. In this dissertation, room temperature operation of the basic MQCA logic gate, i.e. the three-input majority gate, is demonstrated for the first time. Alexandra Imre The samples were fabricated on silicon wafers by using electron-beam lithography for patterning thermally evaporated ferromagnetic metals.
    [Show full text]
  • A New Route for Rare-Earth Free Permanent Magnets
    A new route for rare-earth free permanent magnets : synthesis, structural and magnetic characterizations of dense assemblies of anisotropic nanoparticles Evangelia Anagnostopoulou To cite this version: Evangelia Anagnostopoulou. A new route for rare-earth free permanent magnets : synthesis, structural and magnetic characterizations of dense assemblies of anisotropic nanoparticles. Chemical Physics [physics.chem-ph]. INSA de Toulouse, 2016. English. NNT : 2016ISAT0045. tel-01721218 HAL Id: tel-01721218 https://tel.archives-ouvertes.fr/tel-01721218 Submitted on 1 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) 1SÏTFOUÏFFUTPVUFOVFQBS Evangelia-Eleni Anagnostopoulou -F 24 juin 2016 5J tre : A new route for rare-earth free permanent magnets: synthesis, structural and magnetic characterizations of dense assemblies of anisotropic nanoparticles ED SDM : Nano-physique, nano-composants, nano-mesures - COP 00 6OJUÏEFSFDIFSDIF Laboratoire de Physique et Chimie des Nano-Objets %JSFDUFVS T EFʾÒTF Lise-Marie LACROIX Guillaume VIAU 3BQQPSUFVST Frederic MAZALEYRAT, professeur des universités, ENS Cachan, Paris Lorette SICARD, maître de conférences, ITODYS, Paris "VUSF T NFNCSF T EVKVSZ Catherine AMIENS, président du jury, LCC, Toulouse Frederic OTT, chercheur, CEA, LLB, Paris Manuel Vázquez, professeur des universités, CSIC, Madrid “We play a game of cards with the nature of the paradox.
    [Show full text]
  • [395] Overcoming Thermal Fluctuations, Johannes
    NEWS & VIEWS MAGNETIC NANOSTRUCTURES Overcoming thermal fluctuations The storage density of computer hard drives has increased to the point that magnetic recording media is cheaper than paper. Yet there are limits to this technology. As they decrease in size, magnetic ‘bits’ become thermally unstable, providing a challenge to further miniaturization. JOHANNES EISENMENGER AND a Figure 1 Beating the superparamagnetic limit for IVAN K. SCHULLER* small magnetic nanoparticles. are at the University of California-San Diego, Department of kT a,For very small ferromagnetic Physics, La Jolla, California 92093-0319, USA. (FM) particles the magnetic *e-mail: [email protected] anisotropy energy (responsible for keeping the magnetization ystems that undergo phase transitions experience oriented in certain directions) is Energy random thermal fluctuations.These fluctuations comparable to the thermal S are generally largest close to the phase-transition FM FM energy (kT ).When this happens, temperature,and smaller at lower temperatures. the particles become But when the system itself is small,the energy required superparamagnetic; as thermal for the phase transition becomes comparable to the 0 Orientation angle π fluctuations randomly flip the thermal energy,thus lowering substantially the b magnetization direction between temperature of the transition.In particular,the magnetic parallel and antiparallel energy stored in a small,nanoscale (typically a few tens or orientations.b,When the hundreds of nanometres) magnetic particle is ferromagnetic nanoparticle
    [Show full text]
  • Skyrmions in Magnetic Multilayers
    Skyrmions in Magnetic Multilayers Wanjun Jiang1,2,* 1State Key Laboratory of Low-Dimensional Quantum Physics, and Department of Physics, Tsinghua University, Beijing, China 100084 2Collaborative Innovation Center of Quantum Matter, Beijing, China 100084 *Correspondence should be addressed to: [email protected] Gong Chen* and Kai Liu Department of Physics, University of California, Davis, CA, USA, 95616 *Correspondence should be addressed to: [email protected] Jiadong Zang* Department of Physics, University of New Hampshire, Durham, NH, USA, 03824 *Correspondence should be addressed to: [email protected] Suzanne G. E. te Velthuis and Axel Hoffmann* Materials Science Division, Argonne National Laboratory, Lemont, IL, USA, 60439 *Correspondence should be addressed to: [email protected] Abstract Symmetry breaking together with strong spin-orbit interaction give rise to many exciting phenomena within condensed matter physics. A recent example is the existence of chiral spin textures, which are observed in magnetic systems lacking inversion symmetry. These chiral spin textures, including domain walls and magnetic skyrmions, are both fundamentally interesting and technologically promising. For example, they can be driven very efficiently by electrical currents, and exhibit many new physical properties determined by their real-space topological characteristics. Depending on the details of the competing interactions, these spin textures exist in different parameter spaces. However, the governing mechanism underlying their physical behaviors remain essentially the same. In this review article, the fundamental topological physics underlying these chiral spin textures, the key factors for materials optimization, and current developments and future challenges will be discussed. In the end, a few promising directions that will advance the development of skyrmion based spintronics will be highlighted.
    [Show full text]
  • Molecular Nanomagnets for Novel Spintronics Devices
    Molecular Nanomagnets for Novel Spintronics Devices by Sean Walker A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Science in Chemistry - Quantum Information Waterloo, Ontario, Canada, 2016 © Sean Walker 2016 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Molecular nanomagnets possess interesting quantum properties that make them po- tential candidates for qubits in quantum information processing. Heterometallic an- tiferromagnetic wheels specifically have been shown to have a coherence time long enough to permit quantum computing operations. The field of molecular spintronics deals with the integration of molecular nanomagnets into nanoelectronic devices for the purpose of probing and manipulating these quantum properties. In order for a nanomagnet to be incorporated into such a device it needs to be both magnetically and structurally stable when in contact with nanoelectronic components, and its coupling to the environment needs to be controlled. The first part of this thesis deals with the synthesis and characterization of a derivative of a member of the Cr7Ni family of heterometallic antiferromagnetic wheels. The synthetic process involved introducing long alkyl chains into the or- ganic shell of the nanomagnet in order that it may interact with carbon-based na- noelectronic devices in a non-destructive capacity. The molecule was characterized in order to confirm the results of the synthesis, to gain a greater understanding of how its magnetic properties can be modelled, and to fingerprint the system in order to acquire data that will help determine whether its properties remain intact when attached to a graphene surface.
    [Show full text]
  • Three-Dimensional Nanomagnetism Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P
    Three-dimensional nanomagnetism Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn To cite this version: Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, et al.. Three-dimensional nanomagnetism. Nature Communications, Nature Publishing Group, 2017, 8, pp.15756. 10.1038/ncomms15756. hal-01536109 HAL Id: hal-01536109 https://hal.archives-ouvertes.fr/hal-01536109 Submitted on 10 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW Received 24 Oct 2016 | Accepted 20 Apr 2017 | Published 9 Jun 2017 DOI: 10.1038/ncomms15756 OPEN Three-dimensional nanomagnetism Amalio Ferna´ndez-Pacheco1, Robert Streubel2, Olivier Fruchart3, Riccardo Hertel4, Peter Fischer2,5 & Russell P. Cowburn1 Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.
    [Show full text]
  • New Materials and Effects in Molecular Nanomagnets
    applied sciences Review New Materials and Effects in Molecular Nanomagnets Tomasz Blachowicz 1 and Andrea Ehrmann 2,* 1 Center for Science and Education–Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland; [email protected] 2 Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany * Correspondence: [email protected] Abstract: Molecular magnets are a relatively new class of purely organic or metallo-organic materials, showing magnetism even without an external magnetic field. This interdisciplinary field between chemistry and physics has been gaining increased interest since the 1990s. While bulk molecular magnets are usually hard to build because of their molecular structures, low-dimensional molecular magnets are often easier to construct, down to dot-like (zero-dimensional) structures, which are investigated by different scanning probe technologies. On these scales, new effects such as super- paramagnetic behavior or coherent switching during magnetization reversal can be recognized. Here, we give an overview of the recent advances in molecular nanomagnets, starting with single-molecule magnets (0D), typically based on Mn12, Fe8, or Mn4, going further to single-chain magnets (1D) and finally higher-dimensional molecular nanomagnets. This review does not aim to give a compre- hensive overview of all research fields dealing with molecular nanomagnets, but instead aims at pointing out diverse possible materials and effects in order to stimulate new research in this broad field of nanomagnetism. Keywords: single-molecule magnet (SMM); single-chain magnet (SCM); molecular nanomagnet; molecular structure; information storage Citation: Blachowicz, T.; Ehrmann, A. New Materials and Effects in Molecular Nanomagnets.
    [Show full text]