Mare Moscoviense

Total Page:16

File Type:pdf, Size:1020Kb

Mare Moscoviense 80°E 90°E 100°E 110°E 120°E 130°E 140°E 150°E 160°E 170°E 180° 170°W 160°W 150°W 140°W 130°W 120°W 110°W 100°W 90°W 80°W 50°N 50°N Chapman Paraskevopoulos De Moraes D'Alembert Galvani Debye Sarton Slipher Esnault-Pelterie Montgolfier Chernyshev Schlesinger d . Segers Perkin McLaughlin ar Millikan Rynin Stefan Ger ae Boss Petrie Campbell Guillaume Rim Woltjer . Wegener . Stoletov . Rayet Dunér Gullstrand Schönfeld Pawsey Langevin . Chandler Wood Gerard Vashakidze Bridgman Quetelet Fabry Ley . Winkler Von Zeipel . Becquerel Kulik Fowler Landau Bragg Schneller Perrine Lacchini Bunsen . Sisakyan Wiener H. G. Wells . Ehrlich Von Neumann Thiel 40°N . 40°N Golovin Avicenna Riemann C Razumov a Harkhebi te n Cantor a Tesla Kurchatov Cate Lavoisier na Champollion S K um ur Sumner n cha . er to Frost Beals v Appleton Hutton Moore Parsons Klute . Petropavlovskiy . Giordano Bruno Van Gadomski Charlier Gauss Kidinnu Maanen Douglass Nernst Krylov Evershed Winlock . Nikolaev . Evdokimov Stearns Vestine Szilard Hogg Harriot . Steno Lorentz Röntgen Aston Ulugh Richardson Nijland Sanford Healy v Beigh Nusl Shayn Larmor Teisserenc Blazhko Cockcroft Van den . Feoktistov Bergh Kovalevskaya Maxwell 30°N 30°N Rayleigh Trumpler . Hatanaka Leucippus Seyfert . Kepínski Titov . Tereshkova Espin Innes Laue Urey . Voskresenskiy Catena Ar Lomonosov Fitzgerald Joule . Seneca MARE . Bobone Lyapunov . tamono Parenago Artamonov Bronk Joliot Polzunov Florensky MOSCOVIENSE Dante Ingalls v Komarov Edison Tikhomirov Berkner Freundlich Mineur Bartels Deutsch Meggers . Shatalov Comrie Belyaev Foster . McNally Vernadskiy . Marci Hubble Morse Jackson Helberg Malyy Siedentopf Comstock Robertson Bell Buys- Dziewulski Moseley Olcott Ballot Nagaoka 20°N Catena Dzie . 20°N Cannon . Harvey Shternberg LACUS Balboa . Chang Heng . wulski LUXURIAE Mach Alter Konstantinov Fersman Leonov . Mitra Ohm Al-Biruni Gavrilov Zernike Bredikhin Poynting Popov . Weyl Dalton Tsu Chung-Chi . McMath Kekulé Anderson . Virtanen Möbius Hoffmeister Van Einstein Fleming Raimond Goddard Gent Kamerlingh Kostinskiy MARE Ginzel . Kohlschütter Onnes Nobel Ibn Yunus Vasco da Gama . Theiler Hertz Spencer Grigg . Henyey Mees Jones Hayford . Bohr MARGINIS . Meshcherskiy Sharonov . Pease r Guyot . Rutherford . Glauber Butlerov v . v Dirichlet Kolhörster Boh Safarík Artem'ev Ostwald . s . li Virchow ma l a Dreyer . Recht Vetchinkin St. John e a G a 10°N . a 10°N im Lobachevskiy V R d Sundman o c Moiseev s Papaleksi a Neper V Jansky . Elvey . Carol Kuo Shou . Kasper v . Fischer . Melissa . Mills Ching . ..Shahinaz Richards Zhukovskiy . Ewen . Lebedinskiy . Bingham Romeo Al-Khwarizmi Valier Stein Michelson Carol Ibn Firnas Bergman Tiselius Catena Leuschner Banachiewicz . Katchalsky Erro King .Mons Dilip . Tsander .Knox-Shaw .Mons André Mendeleev . Mandel'shtam Dufay . Engel'gardt Mons. Viviani Dieter .Mons Ardeshir Catena Mendelee .Mons Ganau . Harden . Morozov . Tacchini . Nunn Babcock Sita Schuster Saenger Firsov . Benedict Moissan . Henderson . (G Zasyadko Krasovskiy Green . DL) Dorsa . Dana Zanstra C . Schubert . Peek Hartmann Kibal'chich Chaucer a te . Hertzsprung n . McAdie a Lents Ctesibius Gregory M ic . Leuschner h Back Dorsum e Abul . ls Cloos . o MARE . Fox Wáfa Soddy Catena Gregor n Heron Coriolis ( 0° G 0° IR Congreve Vavilov D SMYTHII Vening ) . Avery . Saha Buisson Meinesz . Haldane Wyld y Lipskiy . Carrillo Schliemann . v . Runge Purkyne v v Glazenap Kramarov Talbot Becvár . Slocum Vesalius . Ca ten Dewar a . Grachev . Warner Lu Prager creti . Hume Pannekoek us (RNI Widmannstätten . Tamm Korolev ntes Lebesgue . Ventris I) Mo . Timiryazev Co . Necho . Couder rd . Tucker Hirayama Stratton i Swasey Vil'ev Daedalus ll Kiess Einthoven Love van den Bos Chaplygin Icarus e Schlüter . Kao ra . Hartwig Kästner Dellinger Sechenov . Helmert . Ludwig Lucretius . Black . Houtermans Kreiken Brunner Keeler Dale . Marconi Evans 10°S . Amici Wan 10°S Ganskiy Langemak Perepelkin Lane Hoo Elmer Ten Bruggencate . Meitner . D'Arsonval Heaviside Crookes . Mechnikov Lacus A Debus . Planté . Kearons Pasteur utu Sherrington Danjon Ro mni Chauvenet ok . Ansgarius . Shirakatsi Fridman s Doppler e t . Dobrovol'skiy L Lowell n ac Beijerinck Racah Paschen Khvol'son o u Volkov Ioffe s . Lallemand Galois M Maunder Kondratyuk Ritz . Geiger . Lander . Backlund . Delporte . Zwicky McKellar Denning . Armi'nski Aitken Rimae Kopff . Kira MARE V Litke Grave e Patsaev . Kopff r Bondarenko . Houzeau is Gibbs Hilbert Isaev Lodygin . Il'in . Hohmann Sklodowska Belopol'skiy Fermi . Bergstrand . v ' Schorr . Balandin Mohorovicic Lewis ORIENTALE Gagarin Vertregt De Vries Sternfeld 20°S Ob Lacus 20°S Diderot li . Bok v Pirquet io t . Babakin Tsiolkovskiy Cyrano nis d Kosberg Wilsing . Chalonge . Fryxell Hecataeus . Koval'skiy Strömgren . Xenophon it tt . Sniadecki e Andronov P Catena Humbol Curie . Izsak Raspletin mae Paracelsus Ri . Murakami Gerasimovich Fesenkov Levi-Civita . Alden . Barbier Perel'man . Zhiritskiy Wróblewski Plummer Von der . Bowditch Stark Nassau . Golitsyn Bawa Waterman Pahlen .Edith Rima . Siegfried Karima . Orlov . Walker . Ellerman Fairouz . Schaeberle . Nicholson Neujmin Humboldt Titius Das M Scaliger . Shuleykin Lauritsen Lacus Sierpinski aaff o r Rim Pettit F . n oc ae a Solitudinis e G s d t Barringer . e Pavlov Holetschek . Mariotte Konoplev s an k Subbotin Zelinskiy V Rumford o Leeuwenhoek o Barnard R 30°S 30°S Birkeland Milne Lampland O'Day Donner Scobee Wright Smith Thomson . Kleymenov MARE Shaler Parkhurst Seidel Dryden . McAuliffe Bolyai . Chebyshev Focas Abel . Resnik . Pizzetti Jules Verne Jarvis M INGENII o Eötvös Oppenheimer Brouwer Tyndall n a . te r McNair Langmuir s lle V . Gernsback ordi a . C l Onizuka . Steklov l i Lovell s Apollo Davisson Blackett . Coblentz MARE Leibnitz . Harlan Bjerknes Clark . Obruchev Chaffee Drude Lundmark Borman . Heyrovsky 40°S 40°S Gum Chant Stetson Ramsay Buffon B Rosseland . Husband o Maksutov u v a M. Anderson . r . McCool Anders d Jenner Ramon . Roche D. Brown Finsen Graff Hamilton Lamb Pogson Oresme . Chawla Koch Carver . L.Clark AUSTRALE Van der Waals Ryder Nishina Baade Pauli Von Kármán White Leavitt Fényi . Catalán Rydberg Chrétien Kozyrev . Hendrix Lebedev Crocco Grissom Garavito Guthnick Cajori Pikel'ner Alder Anuchin Hagen Tseraskiy Riedel Mendel Lyot Cori . Andersson 50°S 50°S 80°E 90°E 100°E 110°E 120°E 130°E 140°E 150°E 160°E 170°E 180° 170°W 160°W 150°W 140°W 130°W 120°W 110°W 100°W 90°W 80°W No topographic data –9900 –8000 –6000 –4000 –2000 0 2000 4000 6000 8200 METERS Color-coded topography key 500 400 300 200 100 50 0 50 100 200 300 400 500 ±50° ±50° ±40° ±40° ±30° ±30° ±20° ±20° ±10° ±10° 0° 0° KILOMETERS.
Recommended publications
  • Aitken Basin
    Geological and geochemical analysis of units in the South Pole – Aitken Basin A.M. Borst¹,², F.S. Bexkens¹,², B. H. Foing², D. Koschny² ¹ Department of Petrology, VU University Amsterdam ² SCI-S. Research and Scientific Support Department, ESA – ESTEC Student Planetary Workshop 10-10-2008 ESA/ESTEC The Netherlands The South Pole – Aitken Basin Largest and oldest Lunar impact basin - Diameter > 2500 km - Depth > 12 km - Age 4.2 - 3.9 Ga Formed during Late heavy bombardment? Window into the interior and evolution of the Moon Priority target for future sample return missions Digital Elevation Model from Clementine altimetry data. Produced in ENVI, 50x vertical exaggeration, orthographic projection centered on the far side. Red +10 km, purple/black -10km. (A.M.Borst et.al. 2008) 1 The Moon and the SPA Basin Geochemistry Iron map South Pole – Aitken Basin mafic anomaly • High Fe, Th, Ti and Mg abundances • Excavation of mafic deep crustal / upper mantle material Thorium map Clementine 750 nm albedo map from USGS From Paul Lucey, J. Geophys. Res., 2000 Map-a-Planet What can we learn from the SPA Basin? • Large impacts; Implications and processes • Volcanism; Origin, age and difference with near side mare basalts • Cratering record; Age, frequency and size distribution • Late Heavy Bombardment; Intensity, duration and origin • Composition of the deeper crust and possibly upper mantle 2 Topics of SPA Basin study 1) Global structure of the basin (F.S. Bexkens et al, 2008) • Rims, rings, ejecta distribution, subsequent craters modifications, reconstructive
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • ANTIPODES on the MOON J.F.Rodionova, E.A.Kozlova
    Lunar and Planetary Science XXXI 1349.pdf ANTIPODES ON THE MOON J.F.Rodionova, E.A.Kozlova Sternberg State Astronomical Institute, Russia Laser altimetry data from accidental coincidence of the antipodes Clementine has allowed to determine is very little (4). some of nearly obliterated multiring The aim of the paper is an basins on the Moon that could not be attempt to reveal antipodes for the new determined on the basis of previous basins detected by the Clementine surveying. The Mendel-Rydberg altimetry. The fact is that the Mutus- Basin, a degraded three ring feature Vlacq Basin is the antipode of the with 630 km in diameter to the south Birkhoff Basin and Friendlich- of Mare Orientale is about 6 km deep Sharonov is the antipode of Mare from rim to floor (1). The Coulomb- Nubium. The detailed data of the all Sarton Basin has been discovered on revealed antipodes is given in Fig. 1.. the northwestern portion of the lunar There is no antipode for the Coulomb- far side. Clementine altimetry reveals a Sarton Basin, but there is Rheita Vallis basin about 490 km in diameter on its place. averaging 6 km in depth, rim to floor. The real nature of the antipodes Tree basins in diameter more than 600 is not clear now. The possibility of km were revealed in the neighbour of convergence of the waves in the the craters Freundlich-Sharonov, antipodal point of the impact is Tsiolkovskiy-Stark, Lomonosov- discussed in some papers. Schults and Fleming. The Mutus-Vlacq Basin an Gault (5) consider that formation of ancient feature on the near side was large basin on the terrestrial planets detected by the altimetry.
    [Show full text]
  • A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights
    50th International Conference on Environmental Systems ICES-2021-186 12-15 July 2021 A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights Masato Sakurai1, Asuka Shima2, Isao Kawano3, Junichi Haruyama4 Japan Aerospace Exploration Agency (JAXA), Chofu-shi, Tokyo, 182-8522, Japan. and Hiroyuki Miyajima5 International University of Health and Welfare, Narita Campus 1, 4-3, Kōzunomori, Narita, Chiba, 286-8686 Japan The lunar surface is a hostile environment subject to harmful radiation and meteorite impacts. A recently discovered lava tube avoids these risks and, as it undergoes only slight temperature changes, it is a promising location for constructing a lunar base. JAXA engages in research in regenerative ECLSS (Environmental Control Life Support Systems), particularly addressing water and air recycling and treating organic waste. Overcoming these challenges is essential for long-term lunar habitation. This paper presents a guideline for a sustainable lunar base design. Nomenclature ECLSS = Environmental Control Life Support System HTV = H-II Transfer Vehicle ISS = International Space Station JAXA = Japan Aerospace Exploration Agency JSASS = Japan Society for Aeronautical and Space Science MHH = Marius Hills Hole MIH = Mare Ingenii Hole MTH = Mare Tranquillitatis Hole SELENE = Selenological and Engineering Explorer UZUME = Unprecedented Zipangu Underworld of the Moon Exploration (name of the research group for vertical holes) SDGs = Sustainable Development Goals SELENE = Selenological and Engineering Explorer I. Introduction uture space exploration will extend beyond low Earth orbit and dramatically expand in scope. In particular, F industrial activities are planned for the Moon with the development of infrastructure that includes lunar bases. This paper summarizes our study of the construction of a crewed permanent settlement, which will be essential to support long-term habitation, resource utilization, and industrial activities on the Moon.
    [Show full text]
  • Location #1: Peary/Whipple Crater
    Location, Location, Location A Lunar Investment Strategy Hoyt Davidson Near Earth LLC June 2017 ISU's International Institute of Space Commerce Lunar Economic Action Plan (LEAP) Space and Questions from 1960 Still Relevant Today Economic Development • How can we utilize our dynamic system of competitive private enterprise in space, as on earth, to make newly discovered resources useful to man? • How can private enterprise and private capital make their maximum contribution? Philosophy and Policy The ultimate goal is not to impress others, or merely to explore our planetary system, but to use accessible space for the benefit of humankind. It is a goal that is not confined to a decade or a century. Nor is it confined to a single nearby destination, or to a fleeting dash to plant a flag. The idea is to begin preparing now for a future in which the material trapped in the Sun's vicinity is available for incorporation into our way of life. Dr. John Marburger, Head of the Office of Science and Technology Policy 2006 3 The Investment Premise • Just as on Earth, lunar real estate “value” is driven by location, location, location Rank Location Why Valuable 1 Peary Crater Best 1st industrial base and settlement 2 Sinus Medii Good cargo port & space elevator site 3 Largest skylights / lava tubes Best large scale settlements 4 Tsiolkovskiy crater, dark side Prime radio astronomy site 5 High helium-3 concentrations Potential high value mining 6 Lipsky Crater Space elevator site for Earth-Moon L2 7 Aristillus High Thorium concentrations • Lunar real
    [Show full text]
  • Analysis of Lava Tubes and Skylights in the Lunar Exploration Context
    EPSC Abstracts Vol. 7 EPSC2012-632-1 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Analysis of Lava Tubes and Skylights in the Lunar Exploration Context E. Martellato, B. Foing, J. Benkhoff ESA/ESTEC, Keplerlaan 1, 2201 Noordwijk ZH, The Netherlands (corresponding author: [email protected], [email protected]) collapsed sections of roofs ([6]). Skylights could Abstract originate as enlargement of pre-existing fractures, for instance following a moonquake ([8]), or as The past and current scientific activities related to the incompleting crusting over the melted lava flow (e.g., future robotic and human exploration of the Moon [4]), or as collapse of the lava tubes ceiling caused by have stressed the importance of lava tubes as random meteoroids impacts (e.g., [6]). convenient settlements in an inhospitable planet, providing a natural shielding to a variety of natural 2. Observations hazards with minimizing costs of the construction of manned bases. The detection of lava tubes could be In our analysis, we consider two skylights candidates favoured by the presence of skylights, which also detected by the Terrain Camera onboard the Japanese represent a way to access to these underground orbiter SELenological and Engineering Explorer structures. In this context, we analyze one of the (SELENE) ([9], [10]), and then observed at higher proposed mechanism of skylights formation, that is resolution by Lunar Reconnaissance Orbiter Camera random impacts craters, by comparing crater- (LROC) onboard the NASA spacecraft Lunar geometry argumentations ([11]) with numerical Reconnaissance Orbiter (LRO) ([2]). modelling outcomes. A first pit is located on the Marius Hills region 1.
    [Show full text]
  • Lunar Pits Gateway to the Subsurface Mark Robinson and Robert Wagner Outline
    Lunar Pits Gateway to the Subsurface Mark Robinson and Robert Wagner Outline • Overview of pits • Good destinations • Arne mission Pits: What are they? • Small, steep-walled collapse features • Of >300 known, all but 16 in impact melts Pits are widespread on the Moon White: Mare and highland pits Blue: Impact melt pits Pits are widespread on the Moon White: Mare and highland pits Blue: Impact melt pits Pits are interesting for exploration • Exposed layer profiles • Benign environment • Radiation, meteorites, temperature variation • Potential cave access • Access to un[space]weathered minerals Top panels from Robinson et al. 2012 Bottom-right from Daga and Daga 1992 Desired data from initial visit • cm-scale wall and floor morphology/albedo • Stretch goal: Composition of layers • Thermal and radiation environment • Presence and extent of any caves • Traversibility Top panels from Robinson et al. 2012 Bottom-right from Daga and Daga 1992 Pit Exploration Challenges • Probably can’t just “drive up to the rim” and see the floor • Surrounding “funnels” are likely unstable • Need a tether or flight • Limited lighting within • Difficult to communicate out Top: Devil’s Throat in Hawai‘i Bottom: Oblique view of Mare Ingenii pit Good targets for exploration Good targets for exploration • Mare Ingenii • 100 x 68 x 65 m • Large overhung region on west side (>20 m) • On lunar far side Good targets for exploration • Lacus Mortis • >150 x 110 x 80 m • 23° entrance slope, • Almost certainly no caves Good targets for exploration • Marius Hills • 58 x 49
    [Show full text]
  • The Tsiolkovskiy Crater Landslide, the Moon: an LROC View
    Icarus 337 (2020) 113464 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The Tsiolkovskiy crater landslide, the moon: An LROC view Joseph M. Boyce a,*, Peter Mouginis-Mark a, Mark Robinson b a Hawaii Institute for Geophysics and Planetology, University of Hawaii, Honolulu 96822, USA b School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA ARTICLE INFO ABSTRACT Keywords: Evidence suggests that the lobate flow feature that extends ~72 km outward from the western rim of Tsiol­ Moon surface kovskiy crater is a long runout landslide. This landslide exhibits three (possibly four) morphologically different Landslides parts, likely caused by local conditions. All of these, plus the ejecta of Tsiolkovskiy crater, and its mare fill are Impact processes approximately of the same crater model age, i.e., ~3.55 � 0.1 Ga. The enormous size of this landslide is unique Geological processes on the Moon and is a result of a combination of several geometric factors (e.g., its location relative to Fermi Terrestrial planets crater), and that Tsiolkovskiy crater was an oblique impact that produced an ejecta forbidden zone on its western side (Schultz, 1976). The landslide formed in this ejecta free zone as the rim of Tsiolkovskiy collapsed and its debris flowedacross the relatively smooth, flatfloor of Fermi crater. In this location, it could be easily identified as a landslide and not ejecta. Its mobility and coefficientof friction are similar to landslides in Valles Marineris on Mars, but less than wet or even dry terrestrial natural flows.This suggests that the Mars landslides may have been emplaced dry.
    [Show full text]
  • VV D C-A- R 78-03 National Space Science Data Center/ World Data Center a for Rockets and Satellites
    VV D C-A- R 78-03 National Space Science Data Center/ World Data Center A For Rockets and Satellites {NASA-TM-79399) LHNAS TRANSI]_INT PHENOMENA N78-301 _7 CATAI_CG (NASA) 109 p HC AO6/MF A01 CSCl 22_ Unc.las G3 5 29842 NSSDC/WDC-A-R&S 78-03 Lunar Transient Phenomena Catalog Winifred Sawtell Cameron July 1978 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt) Maryland 20771 CONTENTS Page INTRODUCTION ................................................... 1 SOURCES AND REFERENCES ......................................... 7 APPENDIX REFERENCES ............................................ 9 LUNAR TRANSIENT PHENOMENA .. .................................... 21 iii INTRODUCTION This catalog, which has been in preparation for publishing for many years is being offered as a preliminary one. It was intended to be automated and printed out but this form was going to be delayed for a year or more so the catalog part has been typed instead. Lunar transient phenomena have been observed for almost 1 1/2 millenia, both by the naked eye and telescopic aid. The author has been collecting these reports from the literature and personal communications for the past 17 years. It has resulted in a listing of 1468 reports representing only slight searching of the literature and probably only a fraction of the number of anomalies actually seen. The phenomena are unusual instances of temporary changes seen by observers that they reported in journals, books, and other literature. Therefore, although it seems we may be able to suggest possible aberrations as the causes of some or many of the phenomena it is presumptuous of us to think that these observers, long time students of the moon, were not aware of most of them.
    [Show full text]
  • The Surface of the Moon
    THE SURFACE OF THE MOON OBSERVATIONS BY THE COMMITTEE ON STUDY OF THE SURFACE FEATURES OF THE MOON F. E. WRIGHT Geophysical Laboratory HE 'I'he Carnegie Institution of Washington Carnegie Institution of Washington was founded by TAndrew Carnegie to advance knowledge in different fields of science through research work. In the early days of the Institution careful surveys of certain branches of sciences were made by special committees of experts to ascertain the particular problems in each field that were strategically important and could be attacked by scientists working together but approaching each problem from different standpoints. The value of diversified but coordinated attack on a problem is well recognized in the military services (tactics) and is equally important in science. The committees, after study of the different fields, recommended certain problems for consideration. Of these a limited number were adopted and small groups of research men were brought to­ gether and given opportunity to work on them. These groups were gradually organized into the departments and laboratories of the Institution. A number of these units have now been operating for more than thirty years, and have made extremely important contributions to science. In addition to support of the work of the departments, the Institution has aided many individual inves­ tigators (research associates) on specific problems related to work of the Institution. During the first twenty years of their existence the departments were so occupied with their own problems that each one functioned as an independent unit with little knowledge of the work and per­ sonnel of the other groups.
    [Show full text]
  • I B R EL ORNIA
    i • a _' a SPACE SCIENCES LABORATORY I # # i UNIVERSITY CALIFORNIA i B_R_EL ORNIA : NRT- o62_o r , - o / - . -.- L (NASA. CR OR TMX OR Ai2 NUMBER) |CATRGORY) 4 3 ,.. -. , , "I Space Science_ Lal_oratory W University of California Berkeley, California 94720 0 RADIATION ANOMALIES ON THE LUNAR SURFACE by David Buhl A Technical Report on NASA Grants NsG 101-61 and NsG Z43-6Z Series No. 8, Issue No. 1 Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Electrical Engineering University of California, Berkeley t January20, 1967 0 8 * 4 r B CONTENTS ABSTRACT ............................. vii ACKNOWLEDGMENTS ....................... _x I • INTRODUCTION ........................... I II. PROPOSAL -- A Study of the Eff;cts of Luna: Cratering on Infrared Observations ............... III. THEORETICAL ANAL _SiS .......... .......... I_ I. Model of a Cra_ered Lunar Surface .............. i8 i. 1 Description nf a model lunar c"ater ............ l_ 1.2 Asstlmp ions made concerning the surface of a crater . ZI i. 3 Consideration of radiation and re radiation in lunar crater 24 1.4 Density nf lunar craters .................. 27 0 Z. Mathematic Aralysis of the Temperature Eistribution ..... _8 2.1 The integral equation for a sl)eric_l crater ........ _8 2.2 Equations describing the temperat;are history of a crater 35 3. Daytime Study of the Moon .................... 42 3.1 The experiments of Pettit and Nicholson ......... 42 3.2 The temperature distribution in an illuminated crater . 44 3.3 The shadow region of a crater ............. 46 3.4 The angular distribution of radiation from a crater . 4q 3.5 _adiation patterns of several craters ..........
    [Show full text]
  • Origin of the Anomalously Rocky Appearance of Tsiolkovskiy Crater
    Icarus 273 (2016) 237–247 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Origin of the anomalously rocky appearance of Tsiolkovskiy crater ∗ Benjamin T. Greenhagen a, , Catherine D. Neish b, Jean-Pierre Williams c, Joshua T.S. Cahill a, Rebecca R. Ghent d,e,PaulO. Hayne f, Samuel J. Lawrence g,NoahE. Petro h, Joshua L. Bandfield i a Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, United States b Department of Earth Sciences, Western University Biological & Geological Sciences Building, Room 1026 1151 Richmond St. N. London, ON N6A 5B7 Canada c Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567, United States d Department of Earth Sciences, Earth Sciences Centre 22 Russell Street Toronto, Ontario, M5S 3B1, Canada e Planetary Science Institute, 1700 East Fort Lowell, Suite 106 Tucson, AZ 85719-2395, United States f Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109 ASU, United States g School of Earth and Space Exploration, PO Box 871404 Tempe, AZ 85287-1404, United States h NASA’s Goddard Space Flight Center, 8800 Greenbelt Rd Greenbelt, MD 20771, United States i Space Science Institute, 4750 Walnut Street | Suite 205 Boulder, Colorado 80301, United States a r t i c l e i n f o a b s t r a c t Article history: Rock abundance maps derived from the Diviner Lunar Radiometer instrument on the Lunar Reconnais- Received 3 August 2015 sance Orbiter (LRO) show Tsiolkovskiy crater to have high surface rock abundance and relatively low re- Revised 6 February 2016 golith thickness.
    [Show full text]