A Two-Stage-To-Orbit Spaceplane Concept with Growth Potential

Total Page:16

File Type:pdf, Size:1020Kb

A Two-Stage-To-Orbit Spaceplane Concept with Growth Potential NASA/TM-2001-209620 A Two-Stage-to-Orbit Spaceplane Concept with Growth Potential Unmeel B. Mehta and Jeffrey V. Bowles February2001 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA's scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA's institutional technical material pertinent to NASA's mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office's diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results.., even TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis. Includes compilations of significant scientific and technical data and information • Access the NASA STI Program Home Page at deemed to be of continuing reference value. http ://www.sti.nasa. gov NASA's counterpart of peer-reviewed formal professional papers but has less stringent • E-mail your question via the Internet to limitations on manuscript length and extent [email protected] of graphic presentations. • Fax your question to the NASA Access Help TECHNICAL MEMORANDUM. Scientific and Desk at (301) 621-0134 technical findings that are preliminary or of specialized interest, e.g., quick release reports, ° Telephone the NASA Access Help Desk at working papers, and bibliographies that contain (301) 621-0390 minimal annotation. Does not contain extensive analysis. Write to: NASA Access Help Desk CONTRACTOR REPORT. Scientific and NASA Center for AeroSpace Information technical findings by NASA-sponsored 7121 Standard Drive contractors and grantees. Hanover, MD 21076-1320 NASA/TM-2001-209620 A Two-Stage-to-Orbit Spaceplane Concept with Growth Potential Unmeel B. Mehta Ames Research Center, Moffett Field, California Jeffrey V. Bowles Ames Research Center, Moffett Field, California National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 I February2001 Acknowledgments While at the NASP National Program Office, Unmeel B. Mehta advocated that the NASP program should set aside the SSTO requirement and develop a TSTO spaceplane with air-breathing propulsion on the first stage. Subse- quently, Thomas J. Gregory directed at NASA Ames Research Center the development of the TSTO spaceplane concept for the NASA access to space study. The authors thank Thomas J. Gregory (retired), Howard E. Goldstein (retired), William D. Henline, and David J. Kinney of NASA Ames Research Center, William J. D. Escher of Scientific Applications International Corporation, and Henry G. Adelman of ELORET Corporation for their helpful comments and suggestions when they reviewed the Manuscript of this paper. This paper is presented as AIAA Paper 2001-1795 at the AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, 24-27 April 2001, Kyoto, Japan. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121 Standard Drive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 (301) 621-0390 (703) 487-4650 A TWO-STAGE-TO-ORBIT SPACEPLANE CONCEPT WITH GROWTH POTENTIAL Unmeel B. Mehta and Jeffrey V. Bowles NASA Ames Research Center, Moffett Field, California, U.S.A. Abstract when the U.S. Space Shuttle Phase B award began, the National Aeronautics and Space Administration A two-stage-to-orbit (TSTO) spaceplane concept (NASA) and contractors were generally unanimous in developed in 1993 is revisited, and new information is considering TSTO fully reusable vehicles as the vehicle provided to assist in the development of the next- of choice. 2 In 1993, RAND believed that the 1965 generation space transportation vehicles. The design choice by the U.S. Air Force was commendable and philosophy, TSTO spaceplane concept, and the design that it would be a strong contender for developing the method are briefly described. A trade study between X-30 spaceplane under the National Aero-Space Plane cold and hot structures leads to the choice of cold (NASP) program, t In 1993, after reviewing the status of structures with external thermal protection systems. The X-30, the U.S. General Accounting Office (GAO) optimal Mach number for staging the second stage of recommended a re-examination of the worth of pursing the TSTO spaceplane (with air-breathing propulsion on single-stage-to-orbit (SSTO) on its own merit. _ In 1994, the first stage) is 10, based on life-cycle cost analysis. Ben Rich expressed that Orient Express (X-30) is The performance and specification of a prototype/ actually two separate concepts, one a rocketship and the experimental (P/X) TSTO spaceplane with a other an airplane. _ "Most likely, that particular twain turbo/ram/scramjet propulsion system and built-in shall never meet successfully. ''a Based on state-of-the- growth potential are presented and discussed. The art hypersonic technologies) '__ the SSTO concept is an internal rate of return on investment is the highest for extreme technical challenge, and its commercial the proposed TSTO spaceplane, vis-h-vis a single- viability is highly questionable in the near term. stage-to-orbit (SSTO) rocket vehicle and a TSTO Nevertheless, the SSTO concept is still advocated. 7 spaceplane without built-in growth. Additional growth potentials for the proposed spaceplane are suggested. Today, the choice of TSTO concept as the near-term This spaceplane can substantially decrease access-to- option, with initial operational capability (IOC) in circa space cost and risk, and increase safety and reliability in 2012, appears to be the correct one. In 1993, a the near term. It can be a serious candidate for the next- spaceplane based on the TSTO concept was generation space transportation system. conceptualized for the Access to Space--Advanced Technology Team. 8Reference 9 briefly describes this Introduction spaceplane. Reference 10 presents a strategy for developing air-breathing spaceplanes, using a TSTO In 1959, the request for recoverable booster system, spaceplane concept. Essential aspects of this concept with a goal of routine access to space, led to the and of this strategy are revisited, and additional Recoverable Orbital Launch System (Aerospace Plane) information, some based on subsequent work, is program in the United States (U.S.). _The U.S. Air provided herein for consideration to assist in the Force emphasized two-stage-to-orbit (TSTO) concepts development of next-generation spaceplanes. as first-generation options, based on guidance from the Air Force Scientific Advisory Board (SAB) and other The lessons drawn from past programs suggest the ad hoc committees. In November 1965, after intensive following design philosophy for the development of the study, review, and evaluation, the TSTO approach (air- next generation space transportation system: 1_(I) breathing first stage with a conventional rocket second technology-driven development, (2) short-term stage) was selected as the preferred approach. In 1970, economical benefits, (3) growth potential, (4) achievable,and(5)safeandreliable,evenatthe TSTO Spaceplane Concept expenseofgreaterup-frontcostandlowerpertormance. Theeconomicalbenefitsarejudgedfor Figure I shows an artist's rendition of the TSTO commercializationofspacetransportation.By spaceplane considered for the mission of achieving 220 definition,acommercialventureisalow-risk nautical miles circular orbit at a 51.6 ° inclination, with investmentandgeneratesa20-plus-percentreturnper 25,000-1b payload [International Space Station Alpha annumoninvestmentwiththeinvestmentpayback (ISSA) resupply mission]. The genesis of this (preferably)within5years.Thedesignphilosophyand spaceplane is the Study of Advanced Air-breathing economicsrcquirementleadtoaspaceplaneconcept Launch Vehicles with Cruise Capability by Lockheed basedontwostages,toaspaceplanethatoperateslike Company in 1967 for NASA Ames Research Center) _ anaircraft,andtoaspaceplancdesignwithbuilt-in growthpotential. Stagingcanincreaseperformanceofagiven technology,rcduccthevehiclesensitivityto performanceparametervariations,ordeliverequal pertbrmanceandlowerriskwithlessadvanced technology.TSTOvehiclesoffergreatermarginand havehigherpayloadpotentialthanSSTOvehicles. TSTOvehiclesrequiresmallerpropellantmass fractions,resultinginlowertake-offgrossweight (TOGW)thanSSTOvehicles.If
Recommended publications
  • Space Launch System (Sls) Motors
    Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft Through Parametric Studies
    energies Article Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies Andrew Ridgway, Ashish Alex Sam * and Apostolos Pesyridis College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK; [email protected] (A.R.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +44-1895-267-901 Received: 26 September 2018; Accepted: 7 December 2018; Published: 10 December 2018 Abstract: This paper aims to contribute to developing a potential combined cycle air-breathing engine integrated into an aircraft design, capable of performing flight profiles on a commercial scale. This study specifically focuses on the single expansion ramp nozzle (SERN) and aircraft-engine integration with an emphasis on the combined cycle engine integration into the conceptual aircraft design. A parametric study using computational fluid dynamics (CFD) have been employed to analyze the sensitivity of the SERN’s performance parameters with changing geometry and operating conditions. The SERN adapted to the different operating conditions and was able to retain its performance throughout the altitude simulated. The expansion ramp shape, angle, exit area, and cowl shape influenced the thrust substantially. The internal nozzle expansion and expansion ramp had a significant effect on the lift and moment performance. An optimized SERN was assembled into a scramjet and was subject to various nozzle inflow conditions, to which combustion flow from twin strut injectors produced the best thrust performance. Side fence studies observed longer and diverging side fences to produce extra thrust compared to small and straight fences. Keywords: scramjet; single expansion ramp nozzle; hypersonic aircraft; combined cycle engines 1.
    [Show full text]
  • Flight Data Analysis of the HYSHOT Flight #2 Scramjet
    13th AIAA/CIRA International Space Planes and Hypersonic Systems and Technologies Conference Flight Data Analysis of HyShot 2 Neal E. Hass*, Michael K. Smart+ NASA Langley Research Center, Hampton, Virginia Allan Paull! University of Queensland, Brisbane, Australia Abstract The development of scramjet propulsion for alternative launch and payload delivery capabilities has comprised largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, the University of Queensland, supported by a large international contingency, devised a ballistic re-entry vehicle experiment called HyShot to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.33 and the other un-fueled. Following a first launch failure on October 30th 2001, the University of Queensland conducted a successful second launch on July 30th, 2002. Post-flight data analysis of the second launch confirmed the presence of supersonic combustion during the approximately 3 second test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some pre-flight shock tunnel tests was observed. Nomenclature f aerodynamic factor h altitude M Mach number P pressure q dynamic pressure s seconds T temperature V velocity w mass flow X axial coordinate Y lateral coordinate Z normal coordinate α angle-of-attack ηc combustion efficiency γ ratio of specific heats φ equivelance ratio ω angular velocity about longitudinal body axis ζ angular velocity of longitudinal axis about velocity vector * Aerospace Engineer, Hypersonic Airbreathing Propulsion Branch + Research Scientist, Hypersonic Airbreathing Propulsion Branch ! Professor, Mechanical Engineering Department 1 Subscripts: 0 freestream c combustor entrance w wedge t2 Pitot Introduction The theoretical performance advantage of scramjets over rockets in hypersonic flight has been well known since the 1950’s.
    [Show full text]
  • Ciam/Nasa Mach 6.5 Scramjet Flight and Ground Test
    AIAA-99-4848 CIAM/NASA MACH 6.5 SCRAMJET FLIGHT AND GROUND TEST R. T. Voland* and A. H. Auslender** NASA Langley Research Center Hampton, VA M. K. Smart Lockheed Martin Engineering Sciences Hampton, VA A.S. Roudakovà, V.L. Semenov¤, and V. Kopchenov¤ Central Institute of Aviation Motors Moscow, Russia ABSTRACT NOMENCLATURE The Russian Central Institute of Aviation Motors (CIAM) performed a flight test of a CIAM-designed, C-16V/K Ð CIAM scramjet engine ground test facility, hydrogen-cooled/fueled dual-mode scramjet engine located in Tureavo, Russia (Figure 10) over a Mach number range of approximately 3.5 to 6.4 CIAM Ð Central Institute of Aviation Motors, Moscow, on February 12, 1998, at the Sary Shagan test range in Russia Kazakhstan. This rocket-boosted, captive-carry test of CO2 Ð Carbon dioxide the axisymmetric engine reached the highest Mach Cp Ð Pressure Coefficient number of any scramjet engine flight test to date. The H Ð Altitude (km, m, or ft) flight test and the accompanying ground test program, H2 Ð Hydrogen conducted in a CIAM test facility near Moscow, were H2O Ð Water performed under a NASA contract administered by the He Ð Helium Dryden Flight Research Center with technical HFL Ð Hypersonic Flying Laboratory assistance from the Langley Research Center. Analysis HRE Ð Hypersonic Research Engine of the flight and ground data by both CIAM and NASA HRE AIM Ð Hypersonic Research Engine, resulted in the following preliminary conclusions. An Aerothermodynamic Integration Model unexpected control sensor reading caused non-optimal Hyper-X Ð NASA airframe integrated scramjet- fueling of the engine, and flowpath modifications added powered vehicle flight test program to the engine inlet during manufacture caused markedly ht Ð Total enthalpy (MJ/kg or Btu/lbm) reduced inlet performance.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • Chemical Kinetics of SCRAMJET Propulsion by Rodger Joseph Biasca Master of Science Aeronautics and Astronautics at the Massachus
    Chemical Kinetics of SCRAMJET Propulsion by Rodger Joseph Biasca S.B. Aeronautics and Astronautics, Massachusetts Institute of Technology, 1987 SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology July 1988 ©1988, Rodger J. Biasca The author hereby grants to MIT and the Charles Stark Draper Laboratory, Inc. permission to reproduce and distribute copies of this thesis document in whole or in part. Signature of Author Department of Aeronautics and Astronautics July 1988 Certified by Professor Jean F. Louis, Co- Thesis Supervisor Department of Aeronautics and Astronautics Professor Manuel Martinez-Sanchez, Co- Thesis Supervisor pepartment of Aeronautics and Astronautics nr Phillin T). Hattis, Technical Supervisor s Stark Draper Laboratory Accepted by xtew,Ex3.*sh \. Professor Harold Y. Wachman,Chairman Department Graduate Committee MAOHUSET1S r1nTSrn OF TEO LOGY TH DRWN SEP 07 1988 A MVrN UU. fl~ u<;HZSR3ES~!'-~' Chemical Kinetics of SCRAMJET Propulsion by Rodger Joseph Biasca Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Recent interest in hypersonics has focused on the development of a single stage to orbit vehicle propelled by hydrogen fueled SCRAMJETs. Necessary for the design of such a vehicle is a thorough understanding of the chemical kinetic mechanism of hydrogen-air combustion and the possible effect this mechanism may have on the performance of the SCRAMJET propulsion system. This thesis investigates possible operational limits placed on a SCRAMJET powered vehicle by the chemical kinetics of the combustion mechanism and estimates the performance losses associated with chemical kinetic effects.
    [Show full text]
  • Boarding the Spaceplane by Roger D
    PageMark-Color-Comp Job Name: 546280_SpaceTimes_Oct2015 ❏ OK to proceed PDF Page: 01_24_SpaceTimes_Oct2015.p4.pdf ❏ Make corrections and proceed Process Plan: VP.MultiPage.PDF Date: 15-10-01 ❏ Make corrections and show another proof Time: 15:28:48 Signed: ___________________ Date: ______ Operator: ____________________________ Boarding the Spaceplane by Roger D. Launius During the administration of President Ronald Reagan, senior government officials began to discuss the possibility of developing an “Orient Express,” a hybrid air and spaceplane that could carry ordinary people between New York City and Tokyo in about one hour. How is this possible? Actually, the concept is quite simple: Develop an aerospace plane that can take off like a conventional jetliner from an ordinary runway. Flying supersonic, it reaches an altitude of 45,000-50,000 feet, where the pilots start scramjet engines, a jet technology that has the potential to push jetcraft to hypersonic speeds. The spaceplane rises to the edge of space and darts to the opposite side of the globe, where the process is reversed, and the vehicle lands like a conventional airplane. It never reaches orbit, but technically it flies in space. The experience is similar to orbital flight, except for the shorter time. Artist concept of the X-37 advanced technology flight demonstrator re-entering Earth’s atmosphere. The X-37 was intended as a testbed for dozens of advanced structural, propulsion, and operational technologies that could dramatically lower the cost of future reusable launch vehicles. (Source: NASA) 4 SPACE TIMES • September/October 2015 PageMark-Color-Comp Job Name: 546280_SpaceTimes_Oct2015 ❏ OK to proceed PDF Page: 01_24_SpaceTimes_Oct2015.p5.pdf ❏ Make corrections and proceed Process Plan: VP.MultiPage.PDF Date: 15-10-01 ❏ Make corrections and show another proof Time: 15:28:48 Signed: ___________________ Date: ______ Operator: ____________________________ The spaceplane concept has long been a staple of dreams of spaceflight.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • EMISSION CALCULATIONS for a SCRAMJET POWERED HYPERSONIC TRANS PORT by Erwin A
    NASA TECHNICAL NASA TM X-71464 MEMORANDUM (NASA-TM-X-71464) EMISSION CALCULATIONS N74- 1244 FOR A'SCRANJET POWERED HYPERSONIC TRANSPORT (NASA) 32 p HC $3.75 CSCL 21E Unclas G3/28 2277 1 Cc EMISSION CALCULATIONS FOR A SCRAMJET POWERED HYPERSONIC TRANS PORT by Erwin A. Lezberg Lewis Research Center Cleveland, Ohio 44135 November, 1973 EMISSION CALCULATIONS FOR A SCRAMJET POWERED HYPERSONIC TRANSPORT by Erwin A. Lezberg Lewis Research Center ABSTRACT Calculations of exhaust emissions from a scramjet powered hy- personic transport burning hydrogen fuel have been performed over a range of Mach numbers of 5 to 12 to provide input data for wake mixing calculations and forecasts of future levels of pollutants in the strato- sphere. The calculations were performed utilizing a one-dimensional chem- ical kinetics computer program for the combustor and exhaust nozzle of a fixed geometry dual-mode scramjet engine. Inlet conditions to the combustor and engine size was based on a vehicle of 2.27x10 5 kg (500 000 lb) gross take of weight with engines sized for Mach 8 cruise. Nitric oxide emissions were very high for stoichiometric engine operation but for Mach 6 cruise at reduced equivalence ratio are in the range predicted for an advanced supersonic transport. Combustor de- signs which utilize fuel staging and rapid expansion to minimize resi- dence time at high combustion temperatures were found to be effective in preventing nitric oxide formation from reaching equilibrium concen- trations. INTRODUCTION Calculations of exhaust emissions from a scramjet powered hyper- sonic transport burning hydrogen fuel have been performed over a range of Mach numbers to provide input data for wake mixing calculations and forecasts of future levels of pollutants in the stratosphere.
    [Show full text]