Mapa Peligros Volcánicos Patagonia Verde

Total Page:16

File Type:pdf, Size:1020Kb

Mapa Peligros Volcánicos Patagonia Verde Conos de Parque Nacional A Puerto Varas 1353 74º 73º Cayutué Vicente Pérez Rosales 72º Volcán Conos V-69 Puerto Varas 2003 Calbuco Cabeza de vaca Volcán Cuernos 1823 Reserva Nacional del Diablo 5 Alerce Ralún 1944 Llanquihue 1639 1763 Cono Rio Leones 1826 La Viguería Cono Lago Vidal Gormaz Los Muermos 815 4 Rollizos 3 2 1720 1039 1494 V-69 6 1740 1747 Lago Chapo 1897 5 1841 1835 3 Puerto Montt 2044 748 2131 Río Cochamó 2012 Cochamó Paso 1 Río Manso 1458 Cono El León 7 1452 Pocoihuén 5 1470 1825 1882 1548 1 1652 5 Parque Nacional 7 1870 4 Alerce Andino V-69 1455 1638 Río Maullín Metri Río Chaica 1457 1658 Río Lenca Maullín Seno de Reloncaví 1318 Los 1719 Puelo 8 Canelos Caleta Yates La Arena 12 11 Tagua Tagua 2171 A Río Frío Valle 2 Lago El Frío V-69 2187 Caleta Fiordo de Reloncaví 6 Puelche Volcán 1743 1217 M Calbuco Yate 1806 Pargua B 9 1761 Río Puelo Contao 1966 La Poza M Chacao Lago Lago Río Traidor Volcán Cabrera Volcán General Pinto Apagado o Hornopirén Concha 5 Hualaihué 22 8 2186 Ancud Llanada 9 13 Aulén 1210 1572 1969 Grande 7 14 23 1954 2033 Parque Nacional Puerto Rolecha 10 Hornopirén 2128 Urrutia Lago Azul 15 2342 24 1955 16 1160 Isla Grande de Chiloé 21 Hornopirén2144 2334 2196 17 1161 Primer Lleguiman 2194 18 19 Corral 10 Lago Las Rocas 42º 20 Caleta Punta Hualaihué Manzano 2149 Río Ventisquero 1826 7 1385 2004 Segundo 2040 5 2309 Corral 2148 1358 Lago Inferior Llancahué 2030 Paso Cholgo 1914 Río Puelo Quemchi Zonas con alto peligro de ser afectadas por lahares y lavas, durante 11 B erupciones originales en el edificio principal y/o en áreas de los cráteres 26 adventicios. 1736 Zonas con moderado peligro de ser afectadas por lahares y lavas, 1178 7 1940 durante erupciones originales en el edificio principal y/o en áreas de 1432 los cráteres adventicios. Parque Nacional Pumalín 2010 Zonas con bajo peligro de ser afectadas por lahares y lavas, durante 27 1887 erupciones originales en el edificio principal y/o en áreas de los cráteres 1218 Río Telele adventicios. Fiordo Comau Ayacara 1268 25 1498 1911 28 Área protegida Fundación Huinay 1920 Alto peligro de caída de piroclastos. Representa la envolvente del sector Río Huequí Volcán 1695 A más susceptible de ser afectado por la acumulación de más de 1 cm 29 1213 Huequi de material piroclástico. Volcán 5 Dalcahue 1860 1425 Barranco colorado 1318 1060 1809 Moderado peligro de caída de piroclastos. Representa la envolvente Río Buill Volcán R e p ú b l i c a A r g n t M 2044 2299 del sector moderadamente susceptible de ser afectado por la Buill 1373 Calle 2107 acumulación de más de 1 cm de material piroclástico. 31 2399 30 2013 Bajo peligro de caída deCastro piroclastos. Representa la envolvente del B Vodudahue 2187 sector menos susceptible de ser afectado por la acumulación de más Río Vodudahue de 1 cm de material piroclástico. Volcán 2120 Porcelana Leptepu 1733 B 1408 Chumilden 1244 1945 Fiordo Largo 1621 Caleta Gonzalo Mapa de ubicación 1881 72° W 68° W M Río Huellas Parque Nacional 1319 Pumalín A 18° S 1180 7 1818 1912 2035 12 13 Río Reñihue 1370 832 Lago Río Negro 1420 Río Negro Lago Reñihue 37 Lago Blanco 32 A Punta Chana 33 Río Rayas 2404 Río Blanco 34 1690 Volcán 1833 Michinmahuida 1866 5 M Volcán 0 36 14 Chaitén 1690 Santa 35 1122 Bárbara 43 1162 Is. Sta. Clara 7 Queilen 45 1877 39 44 Ensenada Chaitén 38 Chaitén Conos 40 Río AmarilloEl Amarillo 41 42 960 1782 1798 15 1995 1979 El Amarillo 1390 43º * 1056 Río Espolón Río Yelcho 1986 1474 1808 Río Blanco A Centros eruptivos de 1496 7 Palvitad Quellón Río Palvitad 2058 Río Cenizas M 1470 1752 58° S 1834 1827 26 Territorio Lago Espolón Chileno 25 Antártico Volcán 55 Polo Sur * “Acuerdo de 1998” Puerto Cárdenas Paso Corcovado 1705 24 Futaleufú 2098 56 Futaleufú 16 1830 54 Bahía Corcovado 1827 1567 53 2332 28 29 1492 Puente Gélvez 1358 52 27 30 1671 REFERENCIA BIBLIOGRÁFICA: Lago Lonconao B Volcán 23 Schilling, M.; Martínez, T.; Amthauer, J.; Contreras, P.; Rovira, A.; Godoy, M.; Sierralta, S.; Toro, K.; González, A.; Río Corcovado B 231 Reserva Nacional Avalanchas 1872 Futaleufú González, M.; Santos, F. 2020. Patagonia Verde: Guía Geoturística. Universidad Austral de Chile, 136 p., 3 mapas 1353 1998 Río Azul22 escala 1:500.000. Valdivia. 1735 57 1565 2390 Este mapa fue elaborado e impreso en el marco del Proyecto “Geoturismo Patagonia Verde (Código 46 17 47 Río Futaleufú 17BPCR-73220)”, ejecutado por la Universidad Austral de Chile mediante el instrumento Bienes Públicos para Volcán 1923 1980 la Competitividad Regional de CORFO. El proyecto fue financiado por el Gobierno Regional de Los Lagos con Yelcho Lago Yelcho 21 51 FNDR, a través del “Programa Desarrollo Sustentable del Destino Turístico Patagonia Verde” (Código BIP B 1433 1882 30342073-0), como parte del Plan Presidencial Especial Zonas Extremas Patagonia Verde. Esta iniciativa contó 885 1843 1848 50 7 con el apoyo del Servicio Nacional de Turismo (SERNATUR), el Servicio Nacional de Geología y Minería 20 (SERNAGEOMIN), la Corporación Nacional Forestal (CONAF) y las municipalidades de Cochamó, Hualaihué, 1795 231 Parque Nacional Río Burritos Chaitén, Palena y Futaleufú. Corcovado 1982 48 1075 Villa Santa Lucía 19 Mapas: Ignacio Andrés Bascuñán Arancibia, Alejandro Antonio Ramos González, Eduardo Antonio Córdova 49 1872 Zúñiga, Juan Andrés Amthauer Concha, Tomás Martínez Ortega, Daniela Díaz. 948 18 235 1940 2082 Modificado a partir del trabajo de: Volcán Volcán 923 Yanteles • Mella, M. 2017. Peligros del Volcán Yate, región de Los Lagos. Servicio Nacional de Geología y Minería. Carta 2050 1621Nevado Geológica de Chile, Serie Geología Ambiental, No. 31, 1 mapa escala 1:50.000. Santiago. 1657 1947 Puerto Ramírez 1860 • Amigo, A.; Lara, LE.; Bertin, D. 2015. Peligros del volcán Chaitén, Región de Los Lagos. Servicio Nacional de Volcán Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental, No. 24, 1 mapa escala 1:50.000. 1707 Yeli 1928 Santiago. 1607 1724 • Mella, M.2013. Mapa Preliminar de peligros volcánicos Volcán Hornopirén. Región de Los Lagos. Informe 1695 inédito, Subdirección Nacional de Geología. Programa de Riesgo Volcánico. Escala 1:75.000. 944 61 • Mella, M .2013. Mapa Preliminar de peligros volcánicos Volcán Apagado. Región de Los Lagos. Informe inédito, 7 58 Paso Subdirección Nacional de Geología. Programa de Riesgo Volcánico. Escala 1:50.000. Río Malito Río Encuentro B 744 • Bucchi, F., Lara, L., 2013. Mapa Preliminar de peligros volcánicos Volcán Huequi. Región de Los Lagos. Informe 32 Río el Diablo inédito, Subdirección Nacional de Geología. Programa de Riesgo Volcánico. Escala 1:50.000. 929 Palena El Malito 235 • Amigo, A.; Bertin, D. Informe inédito, 2012. Mapa Preliminar de peligros volcánicos Volcán Michinmahuida. Río Tic Toc 31 Bahía Tic Toc 59 60 Región de Los Lagos. Subdirección Nacional de Geología. Programa de Riesgo Volcánico. Escala 1:100.000. Lago Trébol Laguna Negra 1071 Conos • Bertin, D; Lara, L., 2012. Mapa Preliminar de peligros volcánicos Volcán Corcovado. Región de Los Lagos. Conos Río Oeste Río Palena Balseo Informe inédito, Subdirección Nacional de Geología. Programa de Riesgo Volcánico. Escala 1:75.000. El Malito 1615 36 Tic Toc B 1760 • Lara, L.; Orozco, G.; Amigo, A.; Silva, C. 2011. Peligros Volcánicos de Chile Servicio Nacional de Geología y 1724 1652 1726 34 Minería, Carta Geológica de Chile, Serie Geología Ambiental, No.13, 26 p., 1 mapa escala 1:2.000.000. Santiago. “Autorizada su circulación por Resolución N° 38 del 17 de agosto de 2020 de la Dirección Nacional de Fronteras Río del Torrente1890 2006 62 870 Tranquilo Río 1028 63 y Límites del Estado. Lago Escondido 1444 33 1867 La edición y la circulación de mapas, cartas geográficas u otro impresos y documentos que se refieran o relacionen con los límites y fronteras de Chile, no comprometen, en modo alguno, al Estado de Chile, de acuerdo 35 con el Art. 2º, (letra g) del DFL Nº83 de 1979 del Ministerio de Relaciones Exteriores” 1649 Arroyo el Moro 1776 ISBN 978-956-8716-28-8 1327 1440 1980 2034 No. Inscripción 8485 Balmaceda 1860 ©Universidad Austral de Chile 1170 720 1611 Diseño: Daniela Díaz Gallardo 2006 Arte Sonoro Austral Ediciones / www.artesonoroaustral.com 2069 1621 B 64 844 Reserva Nacional 0 5 10 20 Río Palena 1670 Lago Palena Lago Claro Solar 1954 Kilómetros Parque Nacional Melimoyu 2112 Lago Palena A Coyhaique 1741 2021 74º 73º La Junta 210272º 1812 Miradores Georrutas Simbología 1 Fiordo de Reloncaví G1: Patagonia Verde de norte a sur Geositio 2 Volcán Yate y fiordo de Reloncaví G2: El batolito Patagónico en el valle de 3 Lago Vidal Gormaz y volcán Cuernos del Diablo Mirador Patagonia 4 Valle Torrentoso Cochamó 5 Pasarela río León G3: El valle del río Puelo Camino 6 Valles de los ríos Manso y Puelo G4: Volcanismo y glaciaciones en la costa de 7 Cerro La Silla, Puntilla Quillón 8 Lago Pinto Concha y volcán Yate Hualaihué Camino interno 9 Volcán Yate G5: Travesía volcán Yate 10 Río Blanco G6: Ascenso al volcán Hornopirén 11 Loberías de Lilihuapi 235 Número de ruta 12 Laguna Tronador G7: Lago Cabrera y la remoción en masa de 1965 Verde 13 Alerces Milenarios G8: El valle del río Blanco Centro poblado 14 Domo volcán Chaitén G9: Viaje por el fiordo Comau 15 Delta del río Yelcho Límite internacional Mapa de Peligros Volcánicos 16 Lago y río Yelcho desde puente Cárdenas G10: Los antiguos mares registrados en la 17 Glaciar Yelcho península Huequi 18 Delta del río Futaleufú Límite Patagonia Verde 19 Río Futaleufú G11: Travesía al glaciar del volcán 20 Cerro Tamango y Tres Monjas Michinmahuida Cuerpo de agua 21 Río Futaleufú desde pasarela La Dificultad
Recommended publications
  • To Late-Holocene Explosive Rhyolitic Eruptions from Chaitén Volcano, Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watt, Sebastian F.L.; Pyle, David M.; Mather, Tamsin A. Evidence of mid- to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile Andean Geology, vol. 40, núm. 2, mayo, 2013, pp. 216-226 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173927491002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 40 (2): 216-226. May, 2013 Andean Geology doi: 10.5027/andgeoV40n2-a02 formerly Revista Geológica de Chile www.andeangeology.cl Evidence of mid- to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile Sebastian F.L. Watt1, 2, David M. Pyle1, Tamsin A. Mather1 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K. [email protected]; [email protected]; [email protected] 2 National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. ABSTRACT. The 2008 eruption of Chaitén Volcano was widely cited as the first activity at the volcano for over 9000 years. However, we have identified evidence from proximal pyroclastic deposits for three additional explosive eruptions of Chaitén within the past 5000 years. Chaitén has therefore produced at least five explosive eruptions in the Holocene, making it among the most active volcanoes, in terms of explosive output, in the southern part of the Andean Southern Volcanic Zone.
    [Show full text]
  • Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile
    Revista Chilena de Historia Natural 65:235-245,1992 Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile Paleoecología de los dep6sitos del Cuaternario tardio en Chiloe Continental, Chile 1 2 3 CALVIN J. HEUSSER , LINDA E. HEUSSER and ARTURO HAUSER 1 Clinton Woods, Tuxedo, New York 10987, USA. 2 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964, USA. 3 Servicio Nacional de Geologia y Mineria, Casilla 10465, Santiago, Chile. ABSTRACT Two stratigraphic records of the late Quaternary vegetation and paleoenvironmental setting of Chiloe Continental, heretofore unstudied, are from (1) a 7.2 m deposit of mire peat at Cuesta Moraga (43025's), dated at 12,310 yr B.P. and interrupted by multiple tephra layers, resting on glacial drift, and (2) a 3-m road cut near Chaiten (42°54'S), 75 km north of Cuesta Moraga, containing a peat bed with wood, dated 11,850 yr B.P., underlying a thick tephra layer and overlying drift. Records are of fossil pollen, spores, and matrix macroremains, loss on ignition, lithology, and ra- diocarbon chronology. There is throughout in the data no indication of fire in predominantly Nothofagus forest com- munities, which during the late-glacial at Chaiten contained, among other tree species, Drimys, Pseudopanax, and Po- docarpus. At Cuesta Moraga, where the forest was relatively open and continued to be open during the Holocene, late- glacial ground cover of Empetrum, Gunnera, and polypodiaceous ferns was supplanted on the mire largely by mi- nerotrophic Cyperaceae until about 8,000 yr B.P.; later, especially after 5,000 yr B.P., ombrotrophic cushion plants, notably Astelia, Donatia, and Tetroncium, with Dacrydium, proliferated on the surface of the mire.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), Page 1 of 15 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • To Late-Holocene Explosive Rhyolitic Eruptions from Chaitén Volcano, Chile
    Andean Geology 40 (2): 216-226. May, 2013 Andean Geology doi: 10.5027/andgeoV40n2-a02 formerly Revista Geológica de Chile www.andeangeology.cl Evidence of mid- to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile Sebastian F.L. Watt1, 2, David M. Pyle1, Tamsin A. Mather1 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K. [email protected]; [email protected]; [email protected] 2 National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. ABSTRACT. The 2008 eruption of Chaitén Volcano was widely cited as the first activity at the volcano for over 9000 years. However, we have identified evidence from proximal pyroclastic deposits for three additional explosive eruptions of Chaitén within the past 5000 years. Chaitén has therefore produced at least five explosive eruptions in the Holocene, making it among the most active volcanoes, in terms of explosive output, in the southern part of the Andean Southern Volcanic Zone. All of the five identified Holocene explosive eruptions produced homogeneous high-silica rhyolite, with near identical compositions. Based on our pyroclastic sequence, we suggest that the largest-volume Holocene eruption of Chaitén occurred at ~4.95 ka, and we correlate this with the Mic2 deposit, which was previously thought to originate from the nearby Michinmahuida Volcano. Keywords: Chaitén Volcano, Andean southern volcanic zone, Holocene tephra stratigraphy, Rhyolite, Explosive volcanism. RESUMEN. Evidencia de erupciones riolíticas del Holoceno medio a tardío del volcán Chaitén, Chile. La erupción del volcán Chaitén en el año 2008 ha sido mencionada ampliamente como la primera actividad de este en los últimos 9 mil años.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Report on Cartography in the Republic of Chile 2011 - 2015
    REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1.
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Hoyas Hidrográficas De Chile: Segunda Región
    HOYAS HIDROGRÁFICAS DE CHILE: SEGUNDA REGIÓN REALIZADO POR: HANS NIEMEYER F. HOVA DEL RlO LOA La hoya hidrográfica del río Loa~ con una superf! cie tota~'de 33 570 km2 , se desarrolla en el tercio norte de la IIa R~ gión de Chile, entre latitudes extremas 20Q52' y 22Q57' L.S. ylongit~ des 68QOO' y 7oQ02' L.o. El río Loa nace en la falda norte del Vn. Mi­ ño~ en los Ojos del Hiño, casi en los límites entre la la y IIa Regio­ nes de Chile, en 21Q15' L.S. y 70Q L.O~ Su longitud total se acerca a 440 km. A pesar de su extensa hoya, los recursos h!dricos provienen de la cuenca alta que comprende alrededor del 20% de la su~ perficie total. Con curso aproximadamente norte-sur~ el Loa reco­ rre casi 150 km en un profundo cañón de altura variable, desde su nací miento hasta el oasis de Chiu ~hiu, pueblo que se levanta en su margen izquierda. En este trayecto recibe sus dos tributarios más importantes que le caen del este: el río San Pedro o Inacaliri y el río Salado. En Chiu Chiu dobla su curso sensiblemente hacia el oeste para alcanzar en un recorrido de 115 km el punto denominado Chacance. En él se le reúne por la derecha el río San Salvador. En Chacance,el Loa toma franca di= recci6n sur-norte hasta fertilizar el oasis de Quillagua, despu~s de una trayectoria de 80 km. A partir de Quillagua el Loa describe un gran arco y luego desemboca en el Pacífico~ en Caleta Huel~n, despu~8 de trasponer el macizo costero en un tajo profundo~ de más de 500 m de al­ tura.
    [Show full text]
  • Boron and Other Trace Element Constraints on the Slab-Derived Component in Quaternary Volcanic Rocks from the Southern Volcanic Zone of the Andes
    Geochemical Journal, Vol. 47, pp. 185 to 199, 2013 Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes HIRONAO SHINJOE,1* YUJI ORIHASHI,2 JOSÉ A. NARANJO,3 DAIJI HIRATA,4 TOSHIAKI HASENAKA,5 TAKAAKI FUKUOKA,6 TAKASHI SANO7 and RYO ANMA8 1Tokyo Keizai University, Japan 2Earthquake Research Institute, The University of Tokyo, Japan 3Servicio Nacional de Geología y Minería, Chile 4Kanagawa Prefectural Museum of Natural History, Japan 5Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, Japan 6Department of Environment Systems, Faculty of Geo-environmental Science, Rissho University, Japan 7Department of Geology and Paleontology, National Museum of Nature and Science, Japan 8Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, Japan (Received April 18, 2012; Accepted December 25, 2012) We present a dataset for boron and other trace element contents obtained from samples from 13 volcanoes distributed along the Quaternary volcanic front of the Southern Volcanic Zone (SVZ) of the Chilean Andes. The dataset shows con- straints on the nature of slab-derived component to mantle source. Analyzed samples show large negative Nb and Ta anomalies, and enrichment of alkaline earth elements and Pb, which are features of typical island arc volcanic rocks. Boron contents of SVZ volcanic rocks range 2.3–125.5 ppm, exhibiting marked enrichment relative to N-MORB and OIB. Both the boron contents and B/Nb ratios of the volcanic rocks increase from the southern SVZ (SSVZ) to central SVZ (CSVZ). Fluid mobile/immobile element ratios (B/Nb, Ba/Nb, Pb/Nb, and K/Nb) are used to examine slab-derived com- ponent to mantle source.
    [Show full text]
  • Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis Charles R Stern* Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA José Antonio Naranjo SERNAGEOMIN, Av. Santa María 0104, Santiago, Chile *Contact email: [email protected] Abstract. The southernmost Andean SVZ (43.5-46°S) (Sellés et al., 2004) further to the north. Among the smaller consists of six stratovolcanoes (Yanteles, Melimoyu, MEC, the Puyuhuapi group are HA type basalts (Fig. 2; Mentolat, Macá, Cay, Hudson). Hudson and Melimoyu are Lopéz et al. 1995a). In contrast, the Palena group just to high-K (K2O>1 wt% at 50 wt% SiO2), high incompatible the north of are LA type basalts (Fig. 2; Watt et al., 2013), element abundance (HA) types. Macá and Cay are low-K, as are all other MEC cones further to the south in the low incompatible element abundance (LA) centers, while Mentolat has very low K, Rb and other incompatible SSVZ. This paper addresses these regional variations in element contents (VLA), similar to Huequi, Calbuco and magma types along and across the SSVZ arc. Nevados de Longaví further north. Such differences have been attributed to differences in degree of mantle partial melting due to variability in the extent of contamination of the mantle source region by hydrous fluids and/or melts derived from subducted oceanic lithosphere, possibly as a result in down-dip temperature changes at the top of the subducted slab.
    [Show full text]
  • Impact of the 1960 Major Subduction Earthquake in Northern Patagonia (Chile, Argentina)
    ARTICLE IN PRESS Quaternary International 158 (2006) 58–71 Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina) Emmanuel Chaprona,b,Ã, Daniel Arizteguic, Sandor Mulsowd, Gustavo Villarosae, Mario Pinod, Valeria Outese, Etienne Juvignie´f, Ernesto Crivellie aRenard Centre of Marine Geology, Ghent University, Ghent, Belgium bGeological Institute, ETH Zentrum, Zu¨rich, Switzerland cInstitute F.A. Forel and Department of Geology and Paleontology, University of Geneva, Geneva, Switzerland dInstituto de Geociencias, Universidad Austral de Chile, Valdivia, Chile eCentro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina fPhysical Geography,Universite´ de Lie`ge, Lie`ge, Belgium Available online 7 July 2006 Abstract The recent sedimentation processes in four contrasting lacustrine and marine basins of Northern Patagonia are documented by high- resolution seismic reflection profiling and short cores at selected sites in deep lacustrine basins. The regional correlation of the cores is provided by the combination of 137Cs dating in lakes Puyehue (Chile) and Frı´as (Argentina), and by the identification of Cordon Caulle 1921–22 and 1960 tephras in lakes Puyehue and Nahuel Huapi (Argentina) and in their catchment areas. This event stratigraphy allows correlation of the formation of striking sedimentary events in these basins with the consequences of the May–June 1960 earthquakes and the induced Cordon Caulle eruption along the Liquin˜e-Ofqui Fault Zone (LOFZ) in the Andes. While this catastrophe induced a major hyperpycnal flood deposit of ca. 3 Â 106 m3 in the proximal basin of Lago Puyehue, it only triggered an unusual organic rich layer in the proximal basin of Lago Frı´as, as well as destructive waves and a large sub-aqueous slide in the distal basin of Lago Nahuel Huapi.
    [Show full text]