A Physical Explanation of Excess Quantum Noise Due to Non-Orthogonal Modes

Total Page:16

File Type:pdf, Size:1020Kb

A Physical Explanation of Excess Quantum Noise Due to Non-Orthogonal Modes OPEN ACCESS Related content - Nonlinear behaviour of a cascade J''JJ A physical explanation of excess quantum noise vector laser A Kul'minskii, R Vilaseca and R Corbalán due to non-orthogonal modes - Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index- and gain- To cite this article: A M van der Lee et al 2001 New J. Phys. 3 2 guided devices J Martín-Regalado, S Balle, M San Miguel et al. - Polarization phenomena in a View the article online for updates and enhancements. laser coherently pumped by a linearly polarized field R Vilaseca, C Serrat, A Kul'minskii et al. This content was downloaded from IP address 170.106.202.226 on 25/09/2021 at 04:05 A physical explanation of excess quantum noise due to non-orthogonal modes AMvanderLee,MPvanExter,NJvanDruten† and J P Woerdman Huygens Laboratory, Leiden University, PO Box 9504, Leiden, The Netherlands E-mail: [email protected] New Journal of Physics 3 (2001) 2.1–2.15 (http://www.njp.org/) Received 15 November 2000; online 23 March 2001 Abstract. We introduce a physical model of excess quantum noise in a laser with non-orthogonal polarization modes. We discuss the cause of the polarization excess quantum noise in terms of an injected wave excitation factor. Within this context the excess noise is due to the fact that the lasing mode is not the polarization state that experiences the highest gain. 1. Introduction When first introduced by Klaus Petermann in 1979 for gain-guided lasers, the Petermann K- factor was controversial [1]. The K-factor (or excess noise factor) is the factor by which the quantum noise is enhanced with respect to the level set by the classical formula (of 1958) of Schawlow and Townes [2]. It was felt by some that since the Schawlow–Townes formula was set in the ‘stone’ of quantum mechanics, Petermann’s result had to be in violation of fundamental principles. This controversy was later solved by Haus and Kawakami [3], who pointed out that the noise terms for different propagating modes in a loss- or gain-guided cavity are correlated and so were still in agreement with the fundamental principles of quantum mechanics. In 1989 Siegman showed that the excess noise factor is not just a property of gain- or loss-guided lasers but of any laser cavity with non-orthogonal modes [4]. The loss of the laser cavity during a round trip makes the propagation of the light non-unitary, which can lead to non-orthogonal modes. However, the relationship between loss and non-orthogonality is a very subtle one. For different cavity configurations with the same average losses, the K-factor can have totally different values. The transverse eigenmodes of the most common laser resonator, the stable cavity, are also practically orthogonal and thus do not show an excess noise factor. This in contrast to an unstable resonator were non-orthogonal transverse eigenmodes appear naturally. † Present address: Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. New Journal of Physics 3 (2001) 2.1–2.15 PII: S1367-2630(01)19094-4 1367-2630/01/000002+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 2.2 Experiments measuring the quantum-limited linewidth of such lasers have demonstrated large excess-noise factors [5, 6]. Our present interest is in non-orthogonal polarization modes. In a stable cavity with orthogonal transverse modes, one can make the polarization modes non-orthogonal; this gives a two-mode model system for studying excess quantum noise (in contrast to the many transverse modes in an unstable resonator). Large polarization K-factors have also been demonstrated experimentally [7, 8]. The polarization non-orthogonality has also proven to be a useful model system to demonstrate that excess quantum noise is coloured [9] and that excess quantum noise can seriously hinder intensity noise squeezing below the standard quantum limit [10]. In both situations, the transverse-mode case and the polarization-mode case, the excess noise factor is satisfactorily described by mode-non-orthogonality theory [4]. This theory formally connects non-orthogonal modes to excess noise, but it does not give a clear view on the physical origin of the excess noise factor. For an unstable resonator a more physical picture of excess noise exists, in terms of the injected-wave excitation (IWE) factor [11]. In this picture the origin of excess quantum noise is attributed to the ‘preamplification’ of the quantum noise before it ends up in the lasing mode. A key role is played by the adjoint of the lasing mode, which is defined by the biorthogonality relation; it is the mode that is orthogonal to all other cavity eigenmodes (apart from the lasing mode). In a cavity with non-orthogonal transverse modes, a wave which has the same transverse mode profile as the adjoint mode excites the lasing mode most efficiently (even more efficient than the eigenmode itself). In an unfolded lens guide picture of an unstable resonator as depicted in figure 1, the physical reason of this excitation advantage is easily seen (this figure was taken from [12]). Before the adjoint mode ends up as the lasing mode it has a few loss-free round trips, whereas the eigenmode experiences loss each round trip due to its magnification. It has been shown that this excitation advantage is mathematically equivalent to the K-factor that follows from mode-non-orthogonality theory [4]. The purpose of this paper is to develop an analogous IWE picture for the non-orthogonal polarization modes, in order to clarify the physical origin of the excess quantum noise in this case. We can derive analytical results for the polarization dynamics, as the polarization state space consists of only two modes, contrary to the manifold of modes in transverse mode space. The article starts in section 2 with the basic equations that describe the polarization evolution and the separate polarization anisotropies, which together produce the non-orthogonal modes. Furthermore, we calculate the IWE factor for two distinct regimes in which the laser can operate; these regimes are the single-mode regime (section 3) and a peculiar two-mode regime (section 4). We end the article with conclusions (section 5). 2. Introducing the basic elements In order to create non-orthogonal polarization modes one needs, in essence, two kinds of polarization anisotropies. The first is a polarization anisotropic loss and the second is a polarization anisotropic dispersion. When only one of the two is present the eigenmodes are orthogonal; only the mixture of the two can yield non-orthogonal modes. Experimentally, two ways have been demonstrated to create non-orthogonal polarization modes. One is to use linear dichroism, i.e. a difference in loss of two orthogonal linear polarization states, in combination with circular birefringence, i.e. a difference in the refractive index of the σ± polarized states [7]. The other method is to use linear dichroism in New Journal of Physics 3 (2001) 2.1–2.15 (http://www.njp.org/) 2.3 unstable resonator equivalent lensguide a) b) Figure 1. A confocal unstable resonator is depicted as a series of lenses that form a equivalent lens guide. A resonator round trip is then equivalent to moving one period through the lens guide. In (a) the eigenmode is depicted, in (b) the adjoint mode. In each round trip the eigenmode spills over the outcoupling mirror, whereas the adjoint mode is focused to its diffraction limit before it starts to diverge and becomes the eigenmode. So the adjoint mode has a number of loss- free round trips; this makes injection in this mode more efficient than injection in the eigenmode. combination with (misaligned) linear birefringence, i.e. a difference in refractive index between two orthogonal linearly polarized states [8]. We have experimentally used the first method and this article will treat the polarization dynamics arising from a linear dichroism and a circular birefringence (see [7] for the experimental implementation of linear dichroism and circular birefringence). We will model the laser as a linear amplifier with a fixed gain, the gain being equal to the losses. As the saturation is neglected this describes a laser at threshold. We choose the σ± states as a basis. The time evolution of the electric field is given by the following equation (see [13] for further discussion): d E E + =(M + gI) + (1) dt E− E− where E+ and E− are the (complex) amplitudes of the circular polarizations σ+ and σ−, respectively. The polarization evolution is separated into two parts. The (2 × 2) matrix M contains the polarization-anisotropic part of the evolution (the trace of M is zero). The real and imaginary parts of the eigenvalues of M determine the relative loss and the relative frequency of the eigenmodes respectively (where relative means, with respect to the loss and frequency of the modes in the absence of M). The isotropic part of the evolution is given by gI, where g is a constant and I is the unity matrix. The value of g is fixed by the condition that the lasing mode of the cavity has a net gain of zero. As the trace of M is zero, this implies that g ≤ 0. The dynamics of two complex mode amplitudes has, in principle, four degrees of freedom. As we are not interested in the overall phase factor, we are left with three remaining degrees of freedom which can be chosen as the intensity I and the two polarization parameters θ and χ, New Journal of Physics 3 (2001) 2.1–2.15 (http://www.njp.org/) 2.4 a) χ θ Zσ b) + 2 χ 2θ X Y σ - Figure 2.
Recommended publications
  • Arxiv:1206.1084V3 [Quant-Ph] 3 May 2019
    Overview of Bohmian Mechanics Xavier Oriolsa and Jordi Mompartb∗ aDepartament d'Enginyeria Electr`onica, Universitat Aut`onomade Barcelona, 08193, Bellaterra, SPAIN bDepartament de F´ısica, Universitat Aut`onomade Barcelona, 08193 Bellaterra, SPAIN This chapter provides a fully comprehensive overview of the Bohmian formulation of quantum phenomena. It starts with a historical review of the difficulties found by Louis de Broglie, David Bohm and John Bell to convince the scientific community about the validity and utility of Bohmian mechanics. Then, a formal explanation of Bohmian mechanics for non-relativistic single-particle quantum systems is presented. The generalization to many-particle systems, where correlations play an important role, is also explained. After that, the measurement process in Bohmian mechanics is discussed. It is emphasized that Bohmian mechanics exactly reproduces the mean value and temporal and spatial correlations obtained from the standard, i.e., `orthodox', formulation. The ontological characteristics of the Bohmian theory provide a description of measurements in a natural way, without the need of introducing stochastic operators for the wavefunction collapse. Several solved problems are presented at the end of the chapter giving additional mathematical support to some particular issues. A detailed description of computational algorithms to obtain Bohmian trajectories from the numerical solution of the Schr¨odingeror the Hamilton{Jacobi equations are presented in an appendix. The motivation of this chapter is twofold.
    [Show full text]
  • Quantum Noise and Quantum Measurement
    Quantum noise and quantum measurement Aashish A. Clerk Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 1 Contents 1 Introduction 1 2 Quantum noise spectral densities: some essential features 2 2.1 Classical noise basics 2 2.2 Quantum noise spectral densities 3 2.3 Brief example: current noise of a quantum point contact 9 2.4 Heisenberg inequality on detector quantum noise 10 3 Quantum limit on QND qubit detection 16 3.1 Measurement rate and dephasing rate 16 3.2 Efficiency ratio 18 3.3 Example: QPC detector 20 3.4 Significance of the quantum limit on QND qubit detection 23 3.5 QND quantum limit beyond linear response 23 4 Quantum limit on linear amplification: the op-amp mode 24 4.1 Weak continuous position detection 24 4.2 A possible correlation-based loophole? 26 4.3 Power gain 27 4.4 Simplifications for a detector with ideal quantum noise and large power gain 30 4.5 Derivation of the quantum limit 30 4.6 Noise temperature 33 4.7 Quantum limit on an \op-amp" style voltage amplifier 33 5 Quantum limit on a linear-amplifier: scattering mode 38 5.1 Caves-Haus formulation of the scattering-mode quantum limit 38 5.2 Bosonic Scattering Description of a Two-Port Amplifier 41 References 50 1 Introduction The fact that quantum mechanics can place restrictions on our ability to make measurements is something we all encounter in our first quantum mechanics class. One is typically presented with the example of the Heisenberg microscope (Heisenberg, 1930), where the position of a particle is measured by scattering light off it.
    [Show full text]
  • Quantum Noise Properties of Non-Ideal Optical Amplifiers and Attenuators
    Home Search Collections Journals About Contact us My IOPscience Quantum noise properties of non-ideal optical amplifiers and attenuators This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 J. Opt. 13 125201 (http://iopscience.iop.org/2040-8986/13/12/125201) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 128.151.240.150 The article was downloaded on 27/08/2012 at 22:19 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF OPTICS J. Opt. 13 (2011) 125201 (7pp) doi:10.1088/2040-8978/13/12/125201 Quantum noise properties of non-ideal optical amplifiers and attenuators Zhimin Shi1, Ksenia Dolgaleva1,2 and Robert W Boyd1,3 1 The Institute of Optics, University of Rochester, Rochester, NY 14627, USA 2 Department of Electrical Engineering, University of Toronto, Toronto, Canada 3 Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, K1N 6N5, Canada E-mail: [email protected] Received 17 August 2011, accepted for publication 10 October 2011 Published 24 November 2011 Online at stacks.iop.org/JOpt/13/125201 Abstract We generalize the standard quantum model (Caves 1982 Phys. Rev. D 26 1817) of the noise properties of ideal linear amplifiers to include the possibility of non-ideal behavior. We find that under many conditions the non-ideal behavior can be described simply by assuming that the internal noise source that describes the quantum noise of the amplifier is not in its ground state.
    [Show full text]
  • Beyond the Shot-Noise and Diffraction Limit
    Quantum plasmonic sensing: beyond the shot-noise and diffraction limit Changhyoup Lee,∗,y,z Frederik Dieleman,{ Jinhyoung Lee,y Carsten Rockstuhl,z,x Stefan A. Maier,{ and Mark Tame∗,k,? yDepartment of Physics, Hanyang University, Seoul, 133-791, South Korea zInstitute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany {EXSS, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom xInstitute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany kUniversity of KwaZulu-Natal, School of Chemistry and Physics, Durban 4001, South Africa ?National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, South Africa E-mail: [email protected]; [email protected] Abstract Photonic sensors have many applications in a range of physical settings, from mea- suring mechanical pressure in manufacturing to detecting protein concentration in biomedical samples. A variety of sensing approaches exist, and plasmonic systems in particular have received much attention due to their ability to confine light below the diffraction limit, greatly enhancing sensitivity. Recently, quantum techniques have been identified that can outperform classical sensing methods and achieve sensitiv- ity below the so-called shot-noise limit. Despite this significant potential, the use of 1 definite photon number states in lossy plasmonic systems for further improving sens- ing capabilities is not well studied. Here, we investigate the sensing performance of a plasmonic interferometer that simultaneously exploits the quantum nature of light and its electromagnetic field confinement. We show that, despite the presence of loss, specialised quantum resources can provide improved sensitivity and resolution beyond the shot-noise limit within a compact plasmonic device operating below the diffraction limit.
    [Show full text]
  • Quantum Noise
    C.W. Gardiner Quantum Noise With 32 Figures Springer -Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty Principle 1 1.1.1 The Equation of Motion and Repeated Measurements 3 1.2 The Spectrum of Quantum Noise 4 1.3 Emission and Absorption of Light 7 1.4 Consistency Requirements for Quantum Noise Theory 10 1.4.1 Consistency with Statistical Mechanics 10 1.4.2 Consistency with Quantum Mechanics 11 1.5 Quantum Stochastic Processes and the Master Equation 13 1.5.1 The Two Level Atom in a Thermal Radiation Field 14 1.5.2 Relationship to the Pauli Master Equation 18 2. Quantum Statistics 21 2.1 The Density Operator 21 2.1.1 Density Operator Properties 22 2.1.2 Von Neumann's Equation 24 2.2 Quantum Theory of Measurement 24 2.2.1 Precise Measurements 25 2.2.2 Imprecise Measurements 25 2.2.3 The Quantum Bayes Theorem 27 2.2.4 More General Kinds of Measurements 29 2.2.5 Measurements and the Density Operator 31 2.3 Multitime Measurements 33 2.3.1 Sequences of Measurements 33 2.3.2 Expression as a Correlation Function 34 2.3.3 General Correlation Functions 34 2.4 Quantum Statistical Mechanics 35 2.4.1 Entropy 35 2.4.2 Thermodynamic Equilibrium 36 2.4.3 The Bose Einstein Distribution 38 2.5 System and Heat Bath - 39 2.5.1 Density Operators for "System" and "Heat Bath" 39 2.5.2 Mutual Influence of "System" and "Bath" 41 XIV Contents 3.
    [Show full text]
  • Quantum Noise Spectroscopy
    Quantum Noise Spectroscopy Dartmouth College and Griffith University researchers have devised a new way to "sense" and control external noise in quantum computing. Quantum computing may revolutionize information processing by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics, but figuring out how to engineer such a machine remains elusive. [8] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible
    [Show full text]
  • The Emergence of Classical Dynamics in a Quantum World
    The Emergence of Classical Dynamics in a Quantum World Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs ver since the advent of quantum mechanics in the mid 1920s, it has been clear that the atoms composing matter Edo not obey Newton’s laws. Instead, their behavior is described by the Schrödinger equation. Surprisingly though, until recently, no clear explanation was given for why everyday objects, which are merely collections of atoms, are observed to obey Newton’s laws. It seemed that, if quantum mechanics explains all the properties of atoms accurately, everyday objects should obey quantum mechanics. As noted in the box to the right, this reasoning led a few scientists to believe in a distinct macro- scopic, or “big and complicated,” world in which quantum mechanics fails and classical mechanics takes over although there has never been experimental evidence for such a failure. Even those who insisted that Newtonian mechanics would somehow emerge from the underlying quantum mechanics as the system became increasingly macroscopic were hindered by the lack of adequate experimental tools. In the last decade, however, this quantum-to-classical transition has become accessible to experimental study and quantitative description, and the resulting insights are the subject of this article. 110 Los Alamos Science Number 27 2002 A Historical Perspective The demands imposed by quantum mechanics on the the façade of ensemble statistics could no longer hide disciplines of epistemology and ontology have occupied the reality of the counterclassical nature of quantum the greatest minds. Unlike the theory of relativity, the other mechanics. In particular, a vast array of quantum fea- great idea that shaped physical notions at the same time, tures, such as interference, came to be seen as everyday quantum mechanics does far more than modify Newton’s occurrences in these experiments.
    [Show full text]
  • Quantum Limits on Measurement
    Quantum Limits on Measurement Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven, B. Yurke, L. Levitov, K. Likharev, … Thanks for slides: L. Kouwenhoven, K. Schwab, K. Lehnert,… Noise and Quantum Measurement 1 R. Schoelkopf Overview of Lectures Lecture 1: Equilibrium and Non-equilibrium Quantum Noise in Circuits Reference: “Quantum Fluctuations in Electrical Circuits,” M. Devoret Les Houches notes Lecture 2: Quantum Spectrometers of Electrical Noise Reference: “Qubits as Spectrometers of Quantum Noise,” R. Schoelkopf et al., cond-mat/0210247 Lecture 3: Quantum Limits on Measurement References: “Amplifying Quantum Signals with the Single-Electron Transistor,” M. Devoret and RS, Nature 2000. “Quantum-limited Measurement and Information in Mesoscopic Detectors,” A.Clerk, S. Girvin, D. Stone PRB 2003. And see also upcoming RMP by Clerk, Girvin, Devoret, & RS Noise and Quantum Measurement 2 R. Schoelkopf Outline of Lecture 3 • Quantum measurement basics: The Heisenberg microscope No noiseless amplification / No wasted information • General linear QND measurement of a qubit • Circuit QED nondemolition measurement of a qubit Quantum limit? Experiments on dephasing and photon shot noise • Voltage amplifiers: Classical treatment and effective circuit SET as a voltage amplifier MEMS experiments – Schwab, Lehnert Noise and Quantum Measurement 3 R. Schoelkopf Heisenberg Microscope ∆p Measure position of free particle: ∆x ∆x = imprecision of msmt. wavelength of probe photon: λ = hc / Eγ ∆p = backaction due to msmt. momentum “kick” due to photon: ∆pE= / c hc E ∆x∆p = ∼ h E c Only an issue if: 1) try to observe both x,p or 2) try to repeat measurements of x Uncertainty principle: ∆x∆p ≥ /2 Noise and Quantum Measurement 4 R.
    [Show full text]
  • A Quantum Noise Approach to Quantum NEMS
    A Quantum Noise Approach to Quantum NEMS Aashish Clerk McGill University S. Bennett (graduate student) Collaborators: K. Schwab, S. Girvin, A. Armour, M. Blencowe • Quantum noise as a route to understanding quantum NEMS… Quantum NEMS: Interesting Issues • How does the conductor affect the oscillator? • Non-trivial dissipative quantum mechanics… the oscillator sees a non-Gaussian, non-equilibrium “bath” ! Systematic way of describing non-equilibrium systems as effective equilibrium baths • Non-equilibrium cooling • strong-feedback “lasing” instabilities,… Quantum NEMS: Interesting Issues • How does the oscillator affect the conductor? • Possibility for quantum limited position detection… opens door to doing quantum control ! Rigorous bound on quantum noise of a detector ! Reaching the quantum limit requires a conductor (detector) with ideal quantum noise properties Non-equilibrium baths? F Problem: the “bath” produced by the conductor is non-equilibrium and non-Gaussian! However: for several systems, theory shows that the conductor acts as an effective equilibrium bath! Point contact: Mozyrsky & Martin, 02; Smirnov, Mourokh & Horing, 03; !cond A.C. & Girvin, 04 Normal-metal SET: Armour & Blencowe, 04 kBTeff " eVDS Quantum dot: Mozyrsky, Martin & Hastings, 04 • Generic way of seeing this? • What in general determines Teff? Effective bath descriptions • If oscillator-conductor coupling is weak, we can rigorously derive a Langevin equation! damping kernel random force • Langevin equation determined by the quantum noise of the conductor: n~F
    [Show full text]
  • Quantum Information Tapping Using a Fiber Optical Parametric Amplifier
    Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs Xueshi Guo1, Xiaoying Li1*, Nannan Liu1 and Z. Y. Ou2,+ 1 College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin, 300072, P. R. China 2 Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA Corresponding authors: *[email protected] and + [email protected] Abstract One of the important function in optical communication system is the distribution of information encoded in an optical beam. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7± 0.1dB and 0.84± 0.09 dB from the signal and idler 1 outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of TTsi+=1.47 ± 0.2 , which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network.
    [Show full text]
  • Superconducting Qubits: Dephasing and Quantum Chemistry
    UNIVERSITY of CALIFORNIA Santa Barbara Superconducting Qubits: Dephasing and Quantum Chemistry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Peter James Joyce O'Malley Committee in charge: Professor John Martinis, Chair Professor David Weld Professor Chetan Nayak June 2016 The dissertation of Peter James Joyce O'Malley is approved: Professor David Weld Professor Chetan Nayak Professor John Martinis, Chair June 2016 Copyright c 2016 by Peter James Joyce O'Malley v vi Any work that aims to further human knowledge is inherently dedicated to future generations. There is one particular member of the next generation to which I dedicate this particular work. vii viii Acknowledgements It is a truth universally acknowledged that a dissertation is not the work of a single person. Without John Martinis, of course, this work would not exist in any form. I will be eter- nally indebted to him for ideas, guidance, resources, and|perhaps most importantly| assembling a truly great group of people to surround myself with. To these people I must extend my gratitude, insufficient though it may be; thank you for helping me as I ventured away from superconducting qubits and welcoming me back as I returned. While the nature of a university research group is to always be in flux, this group is lucky enough to have the possibility to continue to work together to build something great, and perhaps an order of magnitude luckier that we should wish to remain so. It has been an honor. Also indispensable on this journey have been all the members of the physics depart- ment who have provided the support I needed (and PCS, I apologize for repeatedly ending up, somehow, on your naughty list).
    [Show full text]
  • 1 Photon Statistics at Beam Splitters: an Essential Tool in Quantum Information and Teleportation
    1 Photon statistics at beam splitters: an essential tool in quantum information and teleportation GREGOR WEIHS and ANTON ZEILINGER Institut f¨ur Experimentalphysik, Universit¨at Wien Boltzmanngasse 5, 1090 Wien, Austria 1.1 INTRODUCTION The statistical behaviour of photons at beam splitters elucidates some of the most fundamental quantum phenomena, such as quantum superposition and randomness. The use of beam splitters was crucial in the development of such early interferometers as the Michelson-Morley interferometer, the Mach- Zehnder interferometer and others for light. The most generally discussed beam splitter is the so-called half-silvered mirror. It was apparently originally considered to be a mirror in which the reflecting metallic layer is so thin that only half of the incident light is reflected, the other half being transmitted, splitting an incident beam into two equal parts. Today beam splitters are no longer constructed in this way, so it might be more appropriate to call them semi-reflecting beam splitters. Unless otherwise noted, we always consider in this paper a beam splitter to be semi-reflecting. While from the point of view of classical physics a beam splitter is a rather simple device and its physical understanding is obvious, its operation becomes highly non-trivial when we consider quantum behaviour. Therefore the questions we ask and discuss in this paper are very simply as follows: What happens to an individual particle incident on a semi-reflecting beam splitter? What will be the behaviour of two particle incidents simultaneously on a beam splitter? How can the behaviour of one- or two-particle systems in a series of beam splitters like a Mach-Zehnder interferometer be understood? i ii Rather unexpectedly it has turned out that, in particular, the behaviour of two-particle systems at beam splitters has become the essential element in a number of recent quantum optics experiments, including quantum dense coding, entanglement swapping and quantum teleportation.
    [Show full text]