Gary S. Kendall,∗ Christopher Haworth,† Sound Synthesis with and Rodrigo F. Cadiz´ ∗∗ ∗Artillerigatan 40 Auditory Distortion 114 45 Stockholm, Sweden
[email protected] Products †Faculty of Music Oxford University St. Aldate’s, Oxford, OX1 1 DB, United Kingdom
[email protected] ∗∗Center for Research in Audio Technologies, Music Institute Pontificia Universidad Catolica´ de Chile Av. Jaime Guzman´ E. 3300 Providencia, Santiago, Chile 7511261
[email protected] Abstract: This article describes methods of sound synthesis based on auditory distortion products, often called combination tones. In 1856, Helmholtz was the first to identify sum and difference tones as products of auditory distortion. Today this phenomenon is well studied in the context of otoacoustic emissions, and the “distortion” is understood as a product of what is termed the cochlear amplifier. These tones have had a rich history in the music of improvisers and drone artists. Until now, the use of distortion tones in technological music has largely been rudimentary and dependent on very high amplitudes in order for the distortion products to be heard by audiences. Discussed here are synthesis methods to render these tones more easily audible and lend them the dynamic properties of traditional acoustic sound, thus making auditory distortion a practical domain for sound synthesis. An adaptation of single-sideband synthesis is particularly effective for capturing the dynamic properties of audio inputs in real time. Also presented is an analytic solution for matching up to four harmonics of a target spectrum. Most interestingly, the spatial imagery produced by these techniques is very distinctive, and over loudspeakers the normal assumptions of spatial hearing do not apply.