Analysis of Taper Functions for Larix Olgensis Using Mixed Models and TLS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Ecology and Management Stand Structure, Fuel Loads, and Fire
Forest Ecology and Management 262 (2011) 215–228 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Stand structure, fuel loads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions Kip Van de Water a,∗, Malcolm North a,b a Department of Plant Sciences, One Shields Ave., University of California, Davis, CA 95616, USA b USFS Pacific Southwest Research Station, 1731 Research Park Dr., Davis, CA 95618 USA article info abstract Article history: Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return inter- Received 12 December 2010 vals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can Received in revised form 14 February 2011 accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treat- Accepted 18 March 2011 ments applied to upland forests, however, are often excluded from riparian areas due to concerns about Available online 13 April 2011 degrading streamside and aquatic habitat and water quality. Objectives of this study were to compare stand structure, fuel loads, and potential fire behavior between adjacent riparian and upland forests under Keywords: current and reconstructed active-fire regime conditions. Current fuel loads, tree diameters, heights, and Stand structure Fuel load height to live crown were measured in 36 paired riparian and upland plots. Historic estimates of these Fire behavior metrics were reconstructed using equations derived from fuel accumulation rates, current tree data, Riparian and increment cores. Fire behavior variables were modeled using Forest Vegetation Simulator Fire/Fuels Extension. -
Taper Models for Commercial Tree Species in the Northeastern United States
Taper Models for Commercial Tree Species in the Northeastern United States James A. Westfall, and Charles T. Scott Abstract: A new taper model was developed based on the switching taper model of Valentine and Gregoire; the most substantial changes were reformulation to incorporate estimated join points and modification of a switching function. Random-effects parameters were included that account for within-tree correlations and allow for customized calibration to each individual tree. The new model was applied to 19 species groups from data collected on 2,448 trees across the northeastern United States. A comparison of fit statistics showed considerable improvement for the new model. The largest absolute residuals occurred near the tree base, whereas the residuals standardized in relation to tree diameter were generally constant along the length of the stem. There was substantial variability in the rate of taper at the base of the tree, particularly for trees with relatively large dbh. Similar trends were found in independent validation data. The use of random effects allows uncertainty in computed tree volumes to compare favorably with another regional taper equation that uses upper-stem diameter information for local calibration. However, comparisons with results for a locally developed model showed that the local model provided more precise estimates of volume. FOR.SCI. 56(6):515–528. Keywords: tree form, mixed-effects model, switching function, forest inventory ORESTERS HAVE LONG RECOGNIZED the analytical Alberta. The models were fit using the stepwise procedure flexibility afforded by tree taper models, and the for least-squares linear regression. The criterion for variable F development of these models has been extensively selection was based on R2 values. -
Complete Chloroplast Genome of Japanese Larch (Larix Kaempferi): Insights Into Intraspecific Variation with an Isolated Northern Limit Population
Article Complete Chloroplast Genome of Japanese Larch (Larix kaempferi): Insights into Intraspecific Variation with an Isolated Northern Limit Population Shufen Chen 1, Wataru Ishizuka 2, Toshihiko Hara 3 and Susumu Goto 1,* 1 Education and Research Center, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] 2 Forestry Research Institute, Hokkaido Research Organization, Koushunai, Bibai, Hokkaido 079-0166, Japan; [email protected] 3 Institute of Low Temperature Science, Hokkaido University, Sapporo-city, Hokkaido 060-0819, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-5493 Received: 25 July 2020; Accepted: 11 August 2020; Published: 14 August 2020 Abstract: Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. -
Determination of the Most Effective Design for the Measurement Of
www.nature.com/scientificreports OPEN Determination of the most efective design for the measurement of photosynthetic light‑response curves for planted Larix olgensis trees Qiang Liu1,2, Weiwei Jia1* & Fengri Li 1* A photosynthetic light‑response (PLR) curve is a mathematical description of a single biochemical process and has been widely applied in many eco‑physiological models. To date, many PLR measurement designs have been suggested, although their diferences have rarely been explored, and the most efective design has not been determined. In this study, we measured three types of PLR curves (High, Middle and Low) from planted Larix olgensis trees by setting 31 photosynthetically active radiation (PAR) gradients. More than 530 million designs with diferent combinations of PAR gradients from 5 to 30 measured points were conducted to ft each of the three types of PLR curves. The infuence of diferent PLR measurement designs on the goodness of ft of the PLR curves and the accuracy of the estimated photosynthetic indicators were analysed, and the optimal design was determined. The results showed that the measurement designs with fewer PAR gradients generally resulted in worse predicted accuracy for the photosynthetic indicators. However, the accuracy increased and remained stable when more than ten measurement points were used for the PAR gradients. The mean percent error (M%E) of the estimated maximum net photosynthetic rate (Pmax) and dark respiratory rate (Rd) for the designs with less than ten measurement points were, on average, 16.4 times and 20.1 times greater than those for the designs with more than ten measurement points. -
Variations and Determinants of Carbon Content in Plants: a Global Synthesis
1 SUPPORTING INFORMATION 2 Variations and determinants of carbon content in plants: 3 a global synthesis 4 Suhui Ma1, Feng He2, Di Tian1, Dongting Zou1, Zhengbing Yan1, Yulong Yang3, 5 Tiancheng Zhou3, Kaiyue Huang3, Haihua Shen4, Jingyun Fang1* 6 1 Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 7 100871, China; 8 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 9 3 College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; 10 4 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese 11 Academy of Sciences, Beijing 100093, China 12 *Corresponding author: Dr. Jingyun Fang 13 Email: [email protected] 14 This file includes: 15 Figure S1 16 Table S1 and S2 17 18 1 19 Figure S1. Changes in the species composition along the gradients of latitude, mean annual 20 temperature (MAT) and mean annual precipitation (MAP). The percentage of woody plants 21 decreased with the increasing latitude and with the decreasing MAT and MAP. Herb showed the 22 opposite trends with woody plants. Other life forms showed no significant change along latitudinal 23 and climatic gradients. 24 25 2 26 Table S1. Data sets in TRY that contributed to our global dataset of plant carbon content. 27 References cited in this table are attached below. DatasetID Contributor Dataset Name Reference 10 Joseph Craine Roots Of the World (ROW) Database Craine et al., 2005 34 Jon Lloyd The RAINFOR Plant Trait Database Fyllas -
Volume Tables and Taper Equations for Small Diameter Conifers
VOLUME TABLES AND TAPER EQUATIONS FOR SMALL DIAMETER CONIFERS by Sally Joann Schultz A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Masters of Science In Natural Resources: Forestry May, 2003 VOLUME TABLES AND TAPER EQUATIONS FOR SMALL DIAMETER CONIFERS By Sally J. Schultz Approved by the Master's Thesis Committee Gerald M. Allen, Major Professor Date William L. Bigg, Committee Member Date Lawrence Fox, III, Committee Member Date Coordinator, Natural Resources Graduate Program Date 02-F-473-05/03 Natural Resources Graduate Program Number Approved by the Dean of Graduate Studies Donna E. Schafer Date ABSTRACT Volume Tables and Taper Equations for Small Diameter Conifers Sally Joann Schultz Although volume tables have been in existence for years and there are many available, there is very little empirically-based volume information for small diameter trees. For the current study, a total of 79 young ponderosa pine and 111 young white fir trees were selected from naturally regenerated stands and plantations in the McCloud Ranger District of the Shasta-Trinity National Forest. Tree diameters ranged from 1 to 13 inches (2.5 to 33 cm) at breast height and tree heights ranged from 7 to 81 feet (2.1 to 24.7 m). From field measurements, total cubic foot volume inside bark was calculated for each tree. Equations that estimate tree volume given height and diameter at breast height were constructed using weighted least squares regression techniques. In addition, crown ratio was examined for significance in predicting volume. Diameter and height were found to significantly influence volume while crown ratio was found to be insignificant. -
FPS-Guidebook-2015.Pdf
Biometric Methods for Forest Inventory, Forest Growth And Forest Planning The Forester’s Guidebook December 14, 2015 by James D. Arney, Ph.D. Forest Biometrics Research Institute 4033 SW Canyon Road Portland, Oregon 97221 (503) 227-0622 www.forestbiometrics.org Information contained in this document is subject to change without notice and does not represent a commitment on behalf of the Forest Biometrics Research Institute, Portland, Oregon. No part of this document may be transmitted in any form or by any means, electronic or mechanical, including photocopying, without the expressed written permission of the Forest Biometrics Research Institute, 4033 SW Canyon Road, Portland, Oregon 97221. Copyright 2010 – 2017 Forest Biometrics Research Institute. All rights reserved worldwide. Printed in the United States. Forest Biometrics Research Institute (FBRI) is an IRS 501 (c) 3 tax-exempt public research corporation dedicated to research, education and service to the forest industry. Forest Projection and Planning System (FPS) is a registered trademark of Forest Biometrics Research Institute (FBRI), Portland, Oregon. Microsoft Access is a registered trademark of Microsoft Corporation. Windows and Windows 7 are registered trademarks of Microsoft Corporation. Open Database Connectivity (ODBC) is a registered trademark of Microsoft Corporation. ArcMap is a registered trademark of the Environmental Services Research Institute. MapInfo Professional is a registered trademark of MapInfo Corporation. Stand Visualization System (SVS) is a product of the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Trademark names are used editorially, to the benefit of the trademark owner, with no intent to infringe on the Trademark. Technical Support: Telephone: (406) 541-0054 Forest Biometrics Research Institute Corporate: (503) 227-0622 URL: http://www.forestbiometrics.org e-mail: [email protected] Access: 08:00-16:00 PST Monday to Friday ii FBRI – FPS Forester’s Guidebook 2015 Background of Author: In summary, Dr. -
Taper Functions for Lodgepole Pine (Pinus Contorta) and Siberian Larch (Larix Sibirica) in Iceland
ICEL. AGRIC. SCI. 24 (2011), 3-11 Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland Larus Heidarsson1 and Timo PukkaLa2 1 Skógraekt ríkisins, Midvangi 2-4, 700 Egilsstadir, Iceland ([email protected]) 2 University of Eastern Finland, P.O.Box 111, 80101 Joensuu, Finland ([email protected]) ABSTRACT The aim of this study was to test and adjust taper functions for plantation-grown lodgepole pine (Pinus con- torta) and Siberian larch (Larix sibirica) in Iceland. Taper functions are necessary components in modern forest inventory or management planning systems, giving information on diameter at any point along the tree stem. Stem volume and assortment structure can be calculated from that information. The data for lodgepole pine were collected from stands in various parts of Iceland and the data for Siberian larch were collected in and around the Hallormsstadur forest, eastern Iceland. The performance of three functions in predicting dia- meter outside bark were tested for both tree species. The results of this study suggest that the model Kozak 02 is the best option for both Siberian larch and lodgepole pine in Iceland. The coefficient of determination (R2) for the fitted Kozak 02 functions are of the same magnitude as reported in earlier studies. The Kozak II functions gave similar results for the two species analysed in this study, which means that either of them could be used. Keywords: Lodgepole pine, management planning system, Siberian larch, stem form, taper model YFIRLIT Mjókkunarföll fyrir stafafuru (Pinus contorta) og síberíulerki (Larix sibirica) á Íslandi. Meginmarkmið rannsóknarinnar var að prófa og aðlaga þekkt mjókkunarföll þannig að þau yrðu nothæf fyrir stafafuru og lerki á Íslandi. -
Simple Taper: Taper Equations for the Field Forester
SIMPLE TAPER: TAPER EQUATIONS FOR THE FIELD FORESTER David R. Larsen1 Abstract.—“Simple taper” is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear equations in simple taper were developed with data from 11,610 stem analysis trees of 34 species from across the southern United States. A Visual Basic program (Microsoft®) is also provided in the appendix. INTRODUCTION Taper equations are used to predict the diameter of a tree stem at any height of interest. These can be useful for predicting unmeasured stem diameters, for making volume estimates with variable merchantability limits (stump height, minimum top diameter, log lengths, etc.), and for creating log size tables from sampled tree measurements. Forest biometricians know the value of these equations in forest management; however, as currently formulated, taper equations appear to be very complex. Although standard taper equations are flexible and produce appropriate estimates, they can be difficult for many foresters to calibrate or use. Most foresters would not use taper equations unless they are embedded within a computer program. Additionally, very few would consider collecting the data to parameterize the equations for their local conditions. The typical taper equation formulations used today are a splined set of two or three polynomials that are usually quadratic (2nd-order polynomial) or cubic (3rd-order polynomial) (Max and Burkhart 1976). -
Metabolic Response of Larix Olgensis A. Henry to Polyethylene Glycol-Simulated Drought Stress
Metabolic Response of Larix Olgensis A. Henry to Polyethylene Glycol-simulated Drought Stress Lei Zhang State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University) ShanShan Yan State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University) Sufang Zhang State Key Laboratory of Tree Genetics and BreedingNortheast Forestry University Pingyu Yan State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University) Junhui Wang State Key Laboratory of Tree Genetics and Breeding(Chinese Academy Of Forestry) Hanguo Zhang ( [email protected] ) State Key Laboratory of tree Genetic and breeding https://orcid.org/0000-0002-8904-539X Research article Keywords: Drought stress, Larix olgensis, differentially expressed, metabolism Posted Date: November 24th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-107824/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/28 Abstract Background Drought stress in trees limits their growth, survival, and productivity, and it negatively affects the afforestation survival rate. Molecular responses to drought stress have been extensively studied in broad- leaved species, but studies on coniferous species are limited. Results Our study focused on the molecular responses to drought stress in a coniferous species, Larix olgensis A. Henry. Drought stress was simulated in one-year-old seedlings using 25% polyethylene glycol 6000. The drought stress response in these seedlings was assessed by analyzing select biochemical parameters, along with gene expression and metabolite proles. The soluble protein content, peroxidase activity, and malondialdehyde content of L. olgensis were signicantly changed during drought stress. Quantitative gene expression analysis identied a total of 8172 differentially expressed genes in seedlings processed after 24 h, 48 h, and 96 h of drought stress treatment. -
Estimating Historical Forest Density from Land&
Letters to the Editor Ecological Applications, 29(8), 2019, e01968 © 2019 by the Ecological Society of America consistently overestimated density from 16% to 258% in all six study areas that were analyzed. Baker and Williams (2018; henceforth B&W) contend that the major conclusions in Levine et al. (2017; hence- Estimating historical forest density from forth Levine) are not valid. B&W’s primary criticisms focus on (1) the estimation of diameter at stump height land-survey data: a response to Baker and (DSH; 0.30 m) from diameter at breast height (DBH; Williams (2018) 1.37 m) using taper equations, (2) the simulated sam- pling regime used to test PDE performance, and (3) the calculation of the mean neighborhood density (MND). Tree size (i.e., DSH) and neighborhood density (i.e., Citation: Levine, C. R., C. V. Cogbill, B. M. Collins, A. MND) are crucial to the calculation of MHVD since J. Larson, J. A. Lutz, M. P. North, C. M. Restaino, H. both are used in the projection of Voronoi area D. Safford, S. L. Stephens, and J. J. Battles. 2019. Esti- (Williams and Baker 2011). To quantify the impact of mating historical forest density from land-survey data: a these criticisms, B&W modified the published Levine response to Baker and Williams (2018). Ecological Applications 29(8):e01968. 10.1002/eap.1968 simulation code and then reanalyzed the published data from Levine. B&W also object to the spatial scale of the analysis, the selection of field sites used to test PDE per- To the Editor: formance, and the neglect of corroborating evidence. -
Hylobius Abietis
On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46