A NEW SKELETON of the THEROCEPHALIAN SYNAPSID OLIVIEROSUCHUS PARRINGTONI from the LOWER TRIASSIC SOUTH AFRICAN KAROO BASIN by JENNIFER BOTHA-BRINK* and SEAN P

Total Page:16

File Type:pdf, Size:1020Kb

A NEW SKELETON of the THEROCEPHALIAN SYNAPSID OLIVIEROSUCHUS PARRINGTONI from the LOWER TRIASSIC SOUTH AFRICAN KAROO BASIN by JENNIFER BOTHA-BRINK* and SEAN P [Palaeontology, Vol. 54, Part 3, 2011, pp. 591–606] A NEW SKELETON OF THE THEROCEPHALIAN SYNAPSID OLIVIEROSUCHUS PARRINGTONI FROM THE LOWER TRIASSIC SOUTH AFRICAN KAROO BASIN by JENNIFER BOTHA-BRINK* and SEAN P. MODESTOà *Karoo Palaeontology, National Museum, PO Box 266, Bloemfontein 9300, South Africa Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa; e-mail: [email protected] àDepartment of Biology, Cape Breton University, Sydney, NS B1P 6L2, Canada; e-mail: [email protected] Typescript received 10 June 2009; accepted in revised form 6 July 2010 Abstract: We provide a redescription of the therocephalian topterygoid instead of a narrow shaft, the presence of promi- therapsid Olivierosuchus parringtoni based on a new specimen nent pterygoid tuberosities and a narrow, elongated tabular. recovered from the Lower Triassic Lystrosaurus Assemblage A reappraisal of Lower Triassic therocephalian biostratigra- Zone of South Africa and discuss the biostratigraphic impli- phy reveals that most of these taxa are restricted to the lower- cations of Lower Triassic South African therocephalians. The most part of the Lystrosaurus Assemblage Zone revealing a new specimen comprises a skull and articulated anterior por- high diversity, whereafter the diversity decreases dramatically tion of the postcranial skeleton. Olivierosuchus parringtoni in the middle of the zone. However, despite their scarcity in can be distinguished from its akidnognathid relatives, Promo- the middle and upper Lystrosaurus Assemblage Zone, thero- schorhynchus and Moschorhinus, by the presence of a relatively cephalians in the Karoo Basin remain the most diverse the- slender snout. Features that further distinguish Olivierosuchus rapsid clade in the lowermost Triassic, which suggests that from Promoschorhynchus include fewer upper postcanines, an they were able to recover relatively quickly from the end- obtuse angle of the transverse process of the pterygoid and an Permian extinction event and form an important part of the oblique alignment of the suborbital fenestra margin of the postextinction earliest Triassic recovery. palatine. Features that further distinguish Olivierosuchus from Moschorhinus include the presence of a sharp rather than Key words: therocephalians, Early Triassic, Lystrosaurus blunt crista choanalis, a spatulate posterior portion of the ec- Assemblage Zone, Karoo Basin, South Africa. T herocephalia constitutes a group of eutheri- falling within the Lystrosaurus Assemblage Zone) include odont therapsids that appeared during the Middle Moschorhinus kitchingi, Ericiolacerta parva, Regisaurus Permian and went extinct during the Middle Triassic jacobi, Zorillodontops gracilis, Olivierosuchus parringtoni (Abdala et al. 2008). Fossils of this group have been (formerly ‘Olivieria’ parringtoni: Kammerer and Sidor recovered from Africa, Eurasia and Antarctica (Hopson 2002) and indeterminate scaloposaurs (Kammerer 2008). and Barghusen 1986; Rubidge and Sidor 2001), but are These taxa form part of the Early Triassic recovery after most abundant in the Karoo Basin of South Africa. the end-Permian extinction event. Moschorhinus kitchingi They are regarded traditionally as the sister group of is restricted to the Palingkloof Member of the Balfour cynodonts (the most derived therapsid group that Formation. Regisaurus jacobi is represented by two speci- includes mammals as their extant subclade), but inde- mens, and Z. gracilis and E. parva are represented by pendently acquired several mammal-like features. single specimens in South Africa, but their exact strati- Therocephalians are also one of the few therapsid graphic levels are unknown (the specimen originally iden- groups to have survived the end-Permian extinction tified as E. parva from the farm Barendskraal, Palingkloof event, with Moschorhinus kitchingi (probably a junior Member, Balfour Formation is probably not assignable to synonym of Tigrisuchus simus according to Mendrez this taxon; SPM, pers. obs.). Only the indeterminate sca- 1974; Kammerer 2008), crossing the Permian ⁄ Triassic loposaurs (previously identified as Ictidosuchoides, Ictido- boundary (Botha and Smith 2006). suchops and Tetracynodon darti, but now thought to be In the South African Karoo Basin (Text-fig. 1), the juvenile baurioids; Kammerer 2008) and O. parringtoni therocephalians present in Lower Triassic strata (and (according to Neveling 2004) have been recovered from ª The Palaeontological Association doi: 10.1111/j.1475-4983.2011.01048.x 591 592 PALAEONTOLOGY, VOLUME 54 A tion, Wellwood, Graaff-Reinet, Eastern Cape Province; SAM, Iziko South African Museum, Cape Town. Anatomical abbreviations. a, angular; a p, atlantal pleurocentrum; a na, atlantal neural arch; at, atlas; ax, axis; ax ns, axial neural spine; bo, basioccipital; c, centrale; cl, clavicle; c r, cervical rib; d, dentary; d1–5, distal carpals; d ph, distal phalanx; ect, ectopteryg- oid; ept, epipterygoid; f, frontal; h, humerus; ic, interclavicle; j, jugal; l, lacrimal; m, maxilla; mc, metacoracoid; n, nasal; p, parie- tal; pal, palatine; pa, proatlas; par, paroccipital process of opis- thotic; pb, parabasisphenoid; pc, procoracoid; pi, pisiform; pm, premaxilla; po, postorbital; postz, postzygapophysis; pp, postpar- ietal; p ph, proximal phalanx; pra, prearticular; prez, prezygapoph- ysis; prf, prefrontal; pro, prootic; pt, pterygoid; qj, quadratojugal; qp pt, quadrate process of pterygoid; r, rib; ra, radius; rd, radiale; rf, reflected lamina of angular; s, stapes; sa, surangular; sc, scapula; so, supraoccipital; sq, squamosal; st, sternum; t, tabular; tp at, transverse process of atlas; tp ax, transverse process of axis; tp pt, B transverse process of pterygoid; t ph, terminal phalanx; u, ulna; ul, ulnare; v, vomer; I–V, metacarpals. MATERIAL AND METHODS The new specimen of Olivierosuchus parringtoni described here was accessioned into the collections of the National Museum as NMQR 3605. It was prepared mechanically using a pneumatic airscribe by J. Nyaphuli (NM), then photographed and illustrated. We used the following taxa and specimens for comparative purposes: Moschorhinus TEXT-FIG. 1. A, Map of South Africa, showing the limit of kitchingi, NMQR 76, NMQR 3568; Promoschorhynchus the Karoo Basin and location of the Permian ⁄ Triassic boundary platyrhinus, RC 116. and B, summary of the litho- and biostratigraphy for the southern and central Karoo Basin indicating the strata noted in this study. Star indicates location of specimen NMQR 3605. The SYSTEMATIC PALAEONTOLOGY Swartberg member is an informal member and not yet approved by the South African Committee for Stratigraphy. Dates taken SYNAPSIDA Osborn, 1903 from Catuneanu et al. (2005). BGDP, Burgersdorp; C.T., Cape THEROCEPHALIA Broom, 1903 Town; D, Durban; FM, Formation; JHB, Johannesburg; KBG, AKIDNOGNATHIDAE Nopcsa, 1923 Katberg; PTB, Permian ⁄ Triassic boundary. OLIVIEROSUCHUS Kammerer and Sidor, 2002 throughout the Lystrosaurus Assemblage Zone and thus were a persistent part of the Early Triassic recovery fauna Type species. Olivierosuchus (= Olivieria) parringtoni (Brink, in South Africa. 1965). A new specimen of O. parringtoni, which includes the anterior portion of the postcranial skeleton, was recently Revised diagnosis. Distinguished from Promoschorhynchus recovered from the Triassic strata of the Palingkloof and Moschorhinus by a relatively narrow snout. Differs Member, Balfour Formation in the southern Karoo Basin. from Promoschorhynchus in having three upper postcanines The new specimen is the largest known specimen of (vs. five or six), transverse flange of pterygoid almost per- O. parringtoni and brings the total number of specimens pendicular to midline (vs. 50 degrees from the midline), assignable to this species to four. We describe the new suborbital fenestra margin of palatine obliquely aligned specimen here and consider the biostratigraphic implica- (vs. transversely aligned). Differs from Moschorhinus in tions of Early Triassic South African therocephalians. that the crista choanalis is sharp (vs. blunt), the posterior portion of the ectopterygoid is spatulate (vs. narrow shaft), Institutional abbreviations. CGP, Council for Geoscience, Preto- pterygoid tuberosities prominent (vs. low ridge), tabular ria; NM, National Museum, Bloemfontein; RC, Rubidge Collec- narrow and elongated (vs. short and broad). BOTHA-BRINK AND MODESTO: NEW SKELETON OF THE THEROCEPHALIAN OLIVIEROSUCHUS 593 Olivierosuchus parringtoni (Brink, 1965) tooth tip. On the right side of the skull, two small maxillary Text-figures 2–5 teeth lie anterior to the tooth tip, suggesting that two preca- nines are present. Akidnognathids are thought to have a Holotype. BP ⁄ 1 ⁄ 3849 (formerly BPI M379), complete skull and reduced number of precanines (from two to one, Hopson and anterior half of skeleton in articulation, including vertebrae, ribs, Barghusen 1986), and thus, it is more likely that the second pectoral girdle, partial left humerus, complete right forelimb, maxillary tooth in the holotype is instead a replacement tooth including terminal phalanges. for the first precanine. There are three postcanines posterior to the large canine Type locality and horizon. Palingkloof Member, Balfour Forma- (there are four postcanines on the left maxilla of NMQR 62, but tion, Beaufort Group. Lystrosaurus Assemblage Zone, Lower the third tooth is significantly smaller than the others and Triassic; locality New Castle of the Admiralty Estates, Bergville appears to be a replacement tooth for
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Meandering in the Main Karoo Basin, Eastern Cape, South Africa FIELD TRIP LEADERS: Emese Bordy & Goonie Marsh
    POST 10 Meandering in the main Karoo Basin, Eastern Cape, South Africa FIELD TRIP LEADERS: Emese Bordy & Goonie Marsh This comprehensive five day trip will take us through, via an unique route in the shortest travel time and distance, a geo-traverse through over 400 million years of South African geological history. The main focus of the field trip is the sedimentary fill of the southern main Karoo Basin, including the nature of some of the major Karoo intrusive and volcanic complexes of the Eastern Cape. Field Trip Leaders: Emese Bordy and Goonie Marsh Start: Port Elizabeth End: Port Elizabeth Dates: 3-8 September 2016 ITINERARY SUGGESTION OF FLIGHT BOOKING FROM CAPE TOWN TO PORT ELIZABETH: SOUTH AFRICAN AIRWAYS FLIGHT 1803 DEPARTING CAPE TOWN AT 07h00, ARRIVING PORT ELIZABETH AT 08h15 Day 1 3 September 2016, Saturday Arrival at Port Elizabeth Airport and transfer to Grahamstown Overnight at the Graham Hotel in Grahamstown BB via Addo Elephant Park Day 2 4 September 2016, Sunday Stop 1 : Overview of 400 million years of South African geological history though the rocks and landscape of Grahamstown, Eastern Cape. Topics covered: Cape and Karoo systems, formation of the main Karoo Basin and Cape Fold Belt, Gondwana breakup, Cenozoic sea level changes. Location : 1820 Settlers' Monument Features to be seen : Relationship of the geology and geomorphology Cape Fold Belt - large-scale geological and geomorphological features: Witteberg quartzite ridges with some mudstone lenses to the south (cut by the N2 national road) & to the north (called Botha’s Ridge) running across the horizon. City bowl overlying the E-W running contact between soft Witteberg mudstones to the south and Dwyka tillites to the north Flat peneplain underlain by hard silcretes (with Joza/ King’s Flat township on it), visible along the northeastern horizon.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Journal of Anatomy
    Journal of Anatomy J. Anat. (2017) 230, pp325--336 doi: 10.1111/joa.12557 Reconstruction of body cavity volume in terrestrial tetrapods Marcus Clauss,1 Irina Nurutdinova,2 Carlo Meloro,3 Hanns-Christian Gunga,4 Duofang Jiang,2 Johannes Koller,2 Bernd Herkner,5 P. Martin Sander6 and Olaf Hellwich2 1Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland 2Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany 3Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK 4ChariteCrossOver - Institute of Physiology, Berlin, Germany 5Senckenberg Research Institute and Natural History Museum, Frankfurt (Main), Germany 6Steinmann Institute of Palaeontology, University of Bonn, Bonn, Germany Abstract Although it is generally assumed that herbivores have more voluminous body cavities due to larger digestive tracts required for the digestion of plant fiber, this concept has not been addressed quantitatively. We estimated the volume of the torso in 126 terrestrial tetrapods (synapsids including basal synapsids and mammals, and diapsids including birds, non-avian dinosaurs and reptiles) classified as either herbivore or carnivore in digital models of mounted skeletons, using the convex hull method. The difference in relative torso volume between diet types was significant in mammals, where relative torso volumes of herbivores were about twice as large as that of carnivores, supporting the general hypothesis. However, this effect was not evident in diapsids. This may either reflect the difficulty to reliably reconstruct mounted skeletons in non-avian dinosaurs, or a fundamental difference in the bauplan of different groups of tetrapods, for example due to differences in respiratory anatomy.
    [Show full text]
  • Clippety Clop), Kwelera, East London, Great Kei Municipality, Eastern Cape
    PALAEONTOLOGICAL ASSESSMENT: COMBINED FIELD ASSESSMENT AND DESKTOP STUDY Proposed development of Portion 3 of Farm 695 (Clippety Clop), Kwelera, East London, Great Kei Municipality, Eastern Cape. JOHN E. ALMOND (PhD, Cantab) Natura Viva cc, PO Box 12410 Mill Street, CAPE TOWN 8010, RSA. [email protected] October 2011 1. SUMMARY The proposed holiday housing development on Portion 3 of Farm 695 (Clippety Clop), Kwelera, East London, is situated on the northern banks of the tidal Kwelera River, some 20 km northeast of East London, Eastern Cape. The development footprint is largely underlain by Late Permian continental sediments of the Adelaide Subgroup (Lower Beaufort Group, c. 253-251 million years old). These rocks are overlain by Early Triassic sandstones of the Katberg Formation (Tarkastad Subgroup) that build the cliffs and higher ground to the northeast. South of the river the Beaufort Group sediments are intruded and baked by Early Jurassic igneous intrusions of the Karoo Dolerite Suite. The Balfour Formation fluvial sediments are potentially fossiliferous, having yielded elsewhere a wide range of terrestrial vertebrates (bones and teeth of pareiasaurs, therapsids, amphibians et al.), bivalves, trace fossils and vascular plants. The overall impact of this project on local palaeontological heritage is likely to be very minor, however, because the potentially fossiliferous Beaufort Group sediments here are (a) deeply weathered, (b) sparsely fossiliferous, (c) have probably been extensively baked by nearby dolerite intrusions, and (d) are mostly covered with a thick (> 3m) mantle of fossil-poor alluvium. No fossils were observed within good exposures of the Balfour Formation rocks at the coast and in excellent roadcuts inland.
    [Show full text]
  • By in the Spring of 1929, I Had the Privilege of Acting As Guide To
    O n a S o u t h A fr ic a n M a m m a l -l ik e R e p t il e , B a u r i a c y n o p s . By Lieuwe D. Boonstra (South African Museum, Capetown). With 8 textfigures. (Eingelangt am 18. Dezember 1934.) In the spring of 1929, I had the privilege of acting as guide to Professor and Frau Abel on a short collecting trip in the Great Karroo. When the opportunity was offered me of contributing to the number of Palaeobiologica which is to be issued in honor of Professor Abel’s sixtieth birthday,I recalled with pleasure the time we had spent together. When Professor Abel reads this account of a very interesting reptile from the Karroo, I hope that he may have equally pleasant recollections of our donkey-cart excursions in the Great Karroo of South Africa. On working through the collection of Karroo reptiles which had been sold to the American Museum of Natural History by Dr. R. B room in 1913, I came across some interesting remains of a Bauriamorph. Under the number Amer. Mus. 5622, there is catalogued a good skull, a hind-foot and some limb-bones from the Cynognathus zone at Winnaarsbaken. The skull was first described and figured by B room in 1911. In 1913, and again in 1915, the lateral view was republished. In 1914, sections through the sphen- ethmoidal and prootic regions were published by the same author. When the skull first came under my notice, it had a mass of matrix, containing some limb-bones, attached to the preorbital sur­ face of the snout; the teeth of the left side were partly exposed; parts of the basicranium were cleaned; the matrix on the dorsal surface had been removed in a rough manner, so that part of the D.
    [Show full text]
  • Evolution of the Mammalian Fauces Region and the Origin of Suckling
    Evolution of the mammalian fauces region and the origin of suckling The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crompton, Alfred, Catherine Musinsky, Jose Bonaparte, Bhart- Anjan Bhullar, and Tomasz Owerkowicz. Evolution of the mammalian fauces region and the origin of suckling (2018). Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364482 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 1 Evolution of the mammalian fauces region and the origin of suckling Alfred Crompton1†, Catherine Musinsky1, Jose Bonaparte2, Bhart-Anjan Bhullar3, Tomasz Owerkowicz4 1: Harvard University, Organismic and Evolutionary Biology Department, Museum of Comparative Zoology, 26 Oxford St, Cambridge, MA 02138 USA 2: Museo Municipal de C. Naturales "C. Ameghino", 6600 MERCEDES – BS. AS. Argentina 3: Department of Geology & Geophysics, Yale University, PO Box 208109, New Haven, CT 06520- 8109 USA 4: Department of Biology, California State University in San Bernadino, 5500 University Pkwy, San Bernardino, CA 92407 USA †corresponding author: ORCID 0000-0001-6008-2587, [email protected], 617-495-3202 Acknowledgments Thanks to Dr. Edgar Allin for his comments on an early draft of this paper. Thanks to the Museum of Comparative Zoology, its Director, Professor James Hanken, and to the Center for Nanoscale Systems at Harvard University for providing the facilities and finances for this research.
    [Show full text]
  • The Role of Fossils in Interpreting the Development of the Karoo Basin
    Palaeon!. afr., 33,41-54 (1997) THE ROLE OF FOSSILS IN INTERPRETING THE DEVELOPMENT OF THE KAROO BASIN by P. J. Hancox· & B. S. Rubidge2 IGeology Department, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 2Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa ABSTRACT The Permo-Carboniferous to Jurassic aged rocks oft1:J.e main Karoo Basin ofSouth Africa are world renowned for the wealth of synapsid reptile and early dinosaur fossils, which have allowed a ten-fold biostratigraphic subdivision ofthe Karoo Supergroup to be erected. The role offossils in interpreting the development of the Karoo Basin is not, however, restricted to biostratigraphic studies. Recent integrated sedimentological and palaeontological studies have helped in more precisely defming a number of problematical formational contacts within the Karoo Supergroup, as well as enhancing palaeoenvironmental reconstructions, and basin development models. KEYWORDS: Karoo Basin, Biostratigraphy, Palaeoenvironment, Basin Development. INTRODUCTION Invertebrate remains are important as indicators of The main Karoo Basin of South Africa preserves a facies genesis, including water temperature and salinity, retro-arc foreland basin fill (Cole 1992) deposited in as age indicators, and for their biostratigraphic potential. front of the actively rising Cape Fold Belt (CFB) in Fossil fish are relatively rare in the Karoo Supergroup, southwestern Gondwana. It is the deepest and but where present are useful indicators of gross stratigraphically most complete of several depositories palaeoenvironments (e.g. Keyser 1966) and also have of Permo-Carboniferous to Jurassic age in southern biostratigraphic potential (Jubb 1973; Bender et al. Africa and reflects changing depositional environments 1991).
    [Show full text]
  • Osteohistology of Late Triassic Prozostrodontian Cynodonts from Brazil
    Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil Jennifer Botha-Brink1,2, Marina Bento Soares3 and Agustín G. Martinelli3 1 Department of Karoo Palaeontology, National Museum, Bloemfontein, South Africa 2 Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa 3 Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil ABSTRACT The Prozostrodontia includes a group of Late Triassic-Early Cretaceous eucynodonts plus the clade Mammaliaformes, in which Mammalia is nested. Analysing their growth patterns is thus important for understanding the evolution of mammalian life histories. Obtaining material for osteohistological analysis is difficult due to the rare and delicate nature of most of the prozostrodontian taxa, much of which comprises mostly of crania or sometimes even only teeth. Here we present a rare opportunity to observe the osteohistology of several postcranial elements of the basal prozostrodontid Prozostrodon brasiliensis, the tritheledontid Irajatherium hernandezi, and the brasilodontids Brasilodon quadrangularis and Brasilitherium riograndensis from the Late Triassic of Brazil (Santa Maria Supersequence). Prozostrodon and Irajatherium reveal similar growth patterns of rapid early growth with annual interruptions later in ontogeny. These interruptions are associated with wide zones of slow growing bone tissue. Brasilodon and Brasilitherium exhibit a mixture of woven-fibered bone tissue and slower growing parallel-fibered and lamellar bone. The slower growing bone tissues are present even during early ontogeny. The relatively slower growth in Brasilodon and Brasilitherium may be related to their small body size compared to Prozostrodon and Irajatherium. These brasilodontids also exhibit osteohistological similarities with the Late Triassic/Early Jurassic mammaliaform Morganucodon and the Late Cretaceous multituberculate mammals Kryptobaatar and Nemegtbaatar.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • ON BA U RIA C YNOP S BROOM by A. S. BRINK Bauria Cynops Broom
    ON BA U RIA C YNOP S BROOM By A. S. BRINK ABSTRACT Descriptions of this genus and species, the type of an infraorder, have thus far been based on three individuals. The type in the South African Museum, Cape Town is a complete skull, but somewhat unsatisfactorily preserved and cleaned. The second specimen in the American Museum of Natural History, New York, is a good skull with a portion of the skeleton, but the skull has been damaged in the course of preparation. The third specimen is in the Bernard Price Institute. It is an exceptionally fine specimen, but was only superficially cleaned when described. This specimen also includes a portion of the skeleton. Two additional complete skulls, one somewhat crushed, have since been added to the Bernard Price Institute's collection. This paper describes Bauria cynops Broom on information derived from all five specimens. Illustrations are based on the three specimens in this Institute. Attention h also given to the position of this infraorder relative to other related groups. INTRODUCTION Bauria cynops Broom is a classic Karroo therapsid, the type of the important infraorder Bauriamorpha. The name was introduced by Broom in 1909 and for ~alf a century the infraorder enjoyed a great deal of attention, despite the fact that the type genus is still rather inadequately known. There would appear to be little excuse for this peculiar situation when it is considered that past descrip­ tions have been based on three different specimens which could pass as complete or relatively complete skulls, two with partial skeletons. To these three indivi­ duals a fou.-th and a fifth skull are now added.
    [Show full text]