Is the Butcher-Oemler Effect a Function of the Cluster Redshift? S

Total Page:16

File Type:pdf, Size:1020Kb

Is the Butcher-Oemler Effect a Function of the Cluster Redshift? S View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Submitted to The Astrophysical Journal Preprint typeset using LATEX style emulateapj IS THE BUTCHER-OEMLER EFFECT A FUNCTION OF THE CLUSTER REDSHIFT? S. Andreon Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy E-mail: [email protected] and S. Ettori Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK E-mail: [email protected] Submitted to The Astrophysical Journal ABSTRACT Using PSPC Rosat data, we measure x–ray surface brightness profiles, size and luminosity of the Butcher–Oemler (BO) sample of clusters of galaxies. The cluster x-ray size, as measured by the Petrosian rη=2 radius, does not change with redshift and is independent from x-ray luminosity. On the other hand, the x–ray luminosity increases with redshift. Considering that fair samples show no-evolution, or negative luminosity evolution, we conclude that the BO sample is not formed from the same class of objects observed at different look–back times. This is in conflict with the usual interpretation of the Butcher–Oemler as an evolutionary (or redshift–dependent) effect, based on the assumption that we are comparing the same class of objects at different redshifts. Other trends present in the BO sample reflect selection criteria rather than differences in look-back time, as independently confirmed by the fact that trends loose strength when we enlarge the sample with x–ray selected sample of clusters. The variety of optical sizes and shapes of the clusters in the Butcher–Oemler sample, and the Malmquist-like bias, are the reasons for these selection effects that mimic the trends usually interpreted as changes due to evolution. Subject headings: Galaxies: evolution — galaxies: clusters: general — X-rays: general 1. INTRODUCTION important role played by the cluster environment: evolu- tion is strong in clusters and negligible in groups. However Galaxies in distant (z 0:4) clusters differ from those in the nearby systems (e.g.∼ Butcher & Oemler 1984; Dressler this idea have been questioned: Rakos & Schombert (1995) show that it is difficult to fade the majority of the clus- & Gunn 1992). There is a blueing of galaxy color with redshift, also known as Butcher-Oemler effect (hereafter ter population at z 0:7 to make their blue population as scarce as in present–day∼ clusters. Andreon, Davoust & BO effect, Butcher & Oemler 1977, 1984). At z 0:4 Heim (1997) and Ellis et al. (1997) show that cluster ellip- there is a population of almost normal late–type galax-∼ ies that by the present epoch has disappeared, faded or ticals and lenticulars are old galaxies already at z 0:4, and that the majority of them cannot be the end∼ prod- has been disrupted (Dressler et al. 1997). Distant clusters uct of the blue galaxy population. Recently, this result contain galaxies with disturbed morphologies and peculiar spectra. The occurrence of these peculiarities varies from has been extended with clusters up to z 0:9 (Stanford, Eisenhardt & Dickinson 1998). ∼ cluster to cluster and, on average, increases with redshift. Andreon et al. (1997) have made a detailed comparison In general, the change of galaxy properties is explained as the effect of some kind of evolution. of the properties of galaxies in the nearby Coma cluster and the distant cluster, Cl 0939+47. They found that the Oemler, Dressler & Butcher (1997) proposed a physi- spiral population of these two clusters appears too differ- cal reason to explain why most of the clusters showing a BO effect are at high redshift and almost none at the ent in spatial, color and surface brightness distributions to be the same galaxy population observed at two different present epoch: clusters at z 0:4 are much more excep- epochs. The Coma cluster is therefore unlikely to be rep- tional objects than present–day∼ clusters and they are ob- served in the act of growing by merger of smaller clumps, resentative of the end of the evolution path of Cl 0939+47. in agreement with a hierarchical growth of structures as In order to quantify the effect of evolution on the prop- described, for example, by Kauffmann (1995). Further- erties of a given class of objects, it is required that the more, this scenario permits the existence of dynamically observed class is the same at different times. In the case young local clusters, such as the spiral rich Abell 1367 and of the evolution of galaxies in clusters, it is necessary that 2151 clusters, and evolved clusters at high redshift, such as the high redshift clusters studied are the ancestors of the Cl 0024+16. In the Oemler et al. (1997) interpretation of investigated present–day clusters. the BO effect, clusters at higher redshift are dynamically The goal of this paper is to test whether the distant younger, on average, than the nearby ones, because we are and nearby clusters of the BO sample are really the same looking at the epoch of an enhanced cluster formation. population seen at different epochs or two different popu- Allington-Smith et al. (1993) showed that galaxies in lations; in other words, we want to check if we are com- groups do not evolve (except passively) and suggest that paring unripe apples to ripe oranges in understanding how the BO effect should be interpreted as an evidence of the fruit ripens!. We achieve this goal by means of the X–ray 1 2 Is the Butcher-Oemler effect a function of z? properties of the clusters of galaxies, whose evolution is 3.1. Data reduction known. PSPC images in the hard band 0.5–2 keV with 15 arc- The paper is organized as follows: in the next section, sec pixel size have been extracted from the public archive we present our sample of clusters. In Section 3, we discuss at the Max–Planck–Institut f¨ur extraterrestrische Physik the x–ray analysis of their images. The observed trends (MPE) or at the Goddard Space Flight Center (according and their relevance on the BO effect are presented in Sec- to their availability). Table 2 lists x–ray related quantities. tion 4 and 5, respectively. In Section 6, we summarize our We correct our images for exposure variation and telescope main results. 1 vignetting using the distributed exposure maps. All pixels In the following analysis, we adopt H0 =50kms− contaminated by other objects or occulted by ribs have Mpc 1 and =05. The conversion to the physical di- − q0 : been flagged and excluded from the following analysis. mension is done through the equation (Sandage 1988): In order to measure the x–ray radial profiles, bright- nesses are computed in elliptical annuli of semi-major axis z +1 √z+1 3 increasing in geometrical progression of base √2 in order r(kpc) = 2:91 10 θ − 2 ; (1) × H0 (1 + z) to take the S/N approximatively constant along the radius. Ellipticity, position angle (PA hereafter) and center for where θ is the angular radius in arcsec. the cluster emission have been derived paying attention to 2. OUR SAMPLE: THE BUTCHER & OEMLER (1985) the observational data available for distant clusters. For SAMPLE example, we keep fixed the center, even if isophotes center The clusters most frequently compared for measuring moves, since in distant clusters we seldom have data of the BO effect are listed in Butcher & Oemler (1985). This good enough quality to measure the displacement of the list is the master list for many studies (e.g. Dressler & center of the various isophotes. When data are not good Gunn 1992; Oemler, Dressler & Butcher 1997; half of the enough to estimate the ellipticity or the position angle, we sample by Smail et al. 1997; Dressler et al. 1998 is drawn adopt circular apertures. from the BO sample, etc.). The details of the data reduction are as follows: Our sample is made from the BO sample plus Cl – The equivalent radius of each ellipse is that of a circle 0939+47, a cluster at z 0:4 which is frequently stud- of the same area, i.e. r = √ab,wherea; b are the major ied in the context of the∼ BO effect. This sample, which and minor axis of the ellipse. consist of 33(+1) clusters, is not complete in any sense (in – The axis lengths of an elliptical annulus of finite width cluster richness, in z, etc.). Figure 1 reproduces Figure are at half way from the internal and external edges. 3 in Butcher & Oemler (1984), with the addition of Cl – The brightness in an annulus is computed as the ra- 0939+47. The BO effect is evident from the increase of tio of the intensity measured in unflagged pixels and their the fraction of blue galaxies with the redshift. total area. We have x–ray data for 30 of the 34 clusters. Position – We assume that flagged pixels have the same bright- Sensitive Proportional Counter (PSPC) images are avail- ness as unflagged ones in the same annulus. The flux in- able for 25 of these. We call this subsample “HQ” (high side an ellipse is the sum, over the internal annulus, of quality) sample. Five more clusters, as well as many of the product of the brightness computed in each annulus the clusters observed by Rosat, have been observed with and the total area of the annulus (calculated including the previous x–ray missions. We use these old data when nec- flagged pixels). essary. Before we proceed further in the data analysis we need Table 1 presents the whole sample in order of increas- to verify two assumptions: the computed profiles are in- ing redshift.
Recommended publications
  • The X-Ray Universe 2011
    THE X-RAY UNIVERSE 2011 27 - 30 June 2011 Berlin, Germany A conference organised by the XMM-Newton Science Operations Centre, European Space Astronomy Centre (ESAC), European Space Agency (ESA) ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Matthias Ehle, Cristina Hernandez, Jan-Uwe Ness, Norbert Schartel and Martin Stuhlinger Organising Committees Scientific Organising Committee Giorgio Matt (Universit`adegli Studi Roma Tre, Italy) Chair Norbert Schartel (XMM-Newton SOC, Madrid, ESA) Co-Chair M. Ali Alpar (Sabanci University, Istanbul, Turkey) Didier Barret (Centre d’Etude Spatiale des Rayonnements, Toulouse, France) Ehud Behar (Technion Israel Institute of Technology, Haifa, Israel) Hans B¨ohringer (MPE, Garching, Germany) Graziella Branduardi-Raymont (University College London-MSSL, Dorking, UK) Francisco J. Carrera (Instituto de F´ısicade Cantabria, Santander, Spain) Finn E. Christensen (Danmarks Tekniske Universitet, Copenhagen, Denmark) Anne Decourchelle (Commissariat `al’´energie atomique et aux ´energies alternatives, Saclay, France) Jan-Willem den Herder (SRON, Utrecht, The Netherlands) Rosario Gonzalez-Riestra (XMM-Newton SOC, Madrid, ESA) Coel Hellier (Keele University, UK) Stefanie Komossa (MPE, Garching, Germany) Chryssa Kouveliotou (NASA/Marshall Space Flight Center, Huntsville, Alabama, USA) Kazuo Makishima (University of Tokyo, Japan) Sera Markoff (University of Amsterdam, The Netherlands) Brian McBreen (University College Dublin, Ireland) Brian McNamara (University of Waterloo, Canada)
    [Show full text]
  • 1984 Statistics
    NATIONAL RADIO ASTRONOMY OBSERVATORY Observing Summary - 1984 Statistics February 1985 NATIONAL RADIO ASTRONOMY OBSERVATORY Observing Summary - 1984 Statistics February 1985 Some Highlights of the 1984 Research Program • The 300-foot telescope was used to detect low-frequency carbon recombination lines from cold, diffuse Interstellar clouds in the direction of Cas A. Previously reported absorption lines were confirmed at 26 MHz and a number of other lines were identified in the 25 MHz to 68 MHz range. These lines promise to become an important diagnostic for the ionization conditions in cool interstellar clouds. • Extremely painstaking observations of several Abell clusters of galaxies with the 140-foot telescope have yielded three positive detections of the Sunyaev-Zeldovich effect. The dimunition in the brightness of the microwave background in the direction of clusters is the direct result of the Inverse Compton scattering of the 3° K blackbody photons by electrons in the Intracluster gas. The observations took full advantage of the low noise temperature, broadband, and excellent stability of the Green Bank 18-26 MHz maser system. • The J ■ 1*0 transition of the long-sought-after molecular ion, HCNff*", was detected with the 12-meter telescope at 74.1 GHz. The existence of protonated HCN is one of the prime tests of the theory of ion-molecule reaction schemes in interstellar chemistry. Virtually all CN-containing interstellar molecules, such as HCN, HNC, and many long-chain cyanopolyynes, form directly from HCNH+. • A high-resolution VLA survey of all catalogued, high surface brightness, compact objects in the southern galactic plane uncovered a few objects which are not classifiable into previously known SNR categories.
    [Show full text]
  • Weak Lensing Galaxy Cluster Field Reconstruction
    Mon. Not. R. Astron. Soc. 000, 1–12 (2012) Printed 14 October 2018 (MN LATEX style file v2.2) Weak Lensing Galaxy Cluster Field Reconstruction E. Jullo1, S. Pires2, M. Jauzac3 & J.-P. Kneib4;1 1Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 2Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp-SEDI, Service d’Astrophysique, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France 3Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa 4LASTRO, Ecole polytechnique fédérale de Lausanne, Suisse Released 2013 Xxxxx XX ABSTRACT In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising proce- dure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition. In the other case, the model parameters are estimated using a Bayesian MCMC optimization implemented in the lensing software Lenstool. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with MCMC to provide the best results, but at high computational cost, especially when considering resampling.
    [Show full text]
  • Is the Butcher-Oemler Effect a Function of the Cluster Redshift? S. Andreon
    THE ASTROPHYSICAL JOURNAL, 516:647È659, 1999 May 10 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. IS THE BUTCHER-OEMLER EFFECT A FUNCTION OF THE CLUSTER REDSHIFT? S. ANDREON Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy; andreon=na.astro.it AND S. ETTORI Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, England, UK; settori=ast.cam.ac.uk Received 1998 May 29; accepted 1998 December 18 ABSTRACT Using PSPC ROSAT data, we measure the X-ray surface brightness proÐles, size, and luminosity of the Butcher-Oemler (BO) sample of clusters of galaxies. The cluster X-ray size, as measured by the Pet- rosianrg/2 radius, does not change with redshift and is independent of X-ray luminosity. On the other hand, the X-ray luminosity increases with redshift. Considering that fair samples show no evolution, or negative luminosity evolution, we conclude that the BO sample is not formed from the same class of objects observed at di†erent look-back times. This is in conÑict with the usual interpretation of the Butcher-Oemler as an evolutionary (or redshift dependent) e†ect, based on the assumption that we are comparing the same class of objects at di†erent redshifts. Other trends present in the BO sample reÑect selection criteria rather than di†erences in look-back time, as independently conÐrmed by the fact that trends lose strength when we enlarge the sample with an X-rayÈselected sample of clusters. The variety of optical sizes and shapes of the clusters in the Butcher-Oemler sample and the Malmquist-like bias are the reasons for these selection e†ects that mimic the trends usually interpreted as changes due to evolu- tion.
    [Show full text]
  • Longterm MWL Behavior of 1ES1959+650
    Fakultät Physik – Experimentelle Physik 5 Long-term observations of the TeV blazar 1ES 1959+650 Temporal and spectral behavior in the multi-wavelength context Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Michael Backes Dezember 2011 Contents 1 Introduction 1 2 Brief Introduction to Astroparticle Physics 3 2.1 ChargedCosmicRays .............................. 4 2.1.1 CompositionofCosmicRays . 4 2.1.2 EnergySpectrumofCosmicRays. 5 2.1.3 Sources of Cosmic Rays up to 1018 eV................ 6 ∼ 2.1.4 Sources of Cosmic Rays above 1018 eV................ 8 ∼ 2.2 AstrophysicalNeutrinos . ... 12 2.3 PhotonsfromOuterSpace. 13 2.3.1 Leptonic Processes: Connecting Low and High Energy Photons . 13 2.3.2 Hadronic Processes: Connecting Photons, Protons, and Neutrinos . 16 2.4 ActiveGalacticNuclei . 16 2.4.1 Blazars .................................. 17 2.4.2 EmissionModels ............................. 19 2.4.3 BinaryBlackHolesinAGN . 20 3 Instruments for Multi-Wavelength Astronomy 25 3.1 RadioandMicrowave .............................. 25 3.1.1 Single-DishInstruments . 25 3.1.2 Interferometers .............................. 26 3.1.3 Satellites ................................. 27 3.2 Infrared ...................................... 27 3.3 Optical ...................................... 28 3.3.1 Satellite-Born............................... 28 3.3.2 Ground-Based .............................. 28 3.4 Ultraviolet..................................... 29 3.5 X-Rays .....................................
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Counting Gamma Rays in the Directions of Galaxy Clusters
    A&A 567, A93 (2014) Astronomy DOI: 10.1051/0004-6361/201322454 & c ESO 2014 Astrophysics Counting gamma rays in the directions of galaxy clusters D. A. Prokhorov1 and E. M. Churazov1,2 1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute (IKI), Profsouznaya 84/32, 117997 Moscow, Russia Received 6 August 2013 / Accepted 19 May 2014 ABSTRACT Emission from active galactic nuclei (AGNs) and from neutral pion decay are the two most natural mechanisms that could establish a galaxy cluster as a source of gamma rays in the GeV regime. We revisit this problem by using 52.5 months of Fermi-LAT data above 10 GeV and stacking 55 clusters from the HIFLUCGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of neutral pion decay, arising from hadronic interactions of relativistic protons with an intracluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3σ. Evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has a higher count rate of 1.9 ± 0.3 per cluster compared to the subsample of non-cool core clusters at 1.3 ± 0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial, if not dominant.
    [Show full text]
  • The Jets in Radio Galaxies
    The jets in radio galaxies Martin John Hardcastle Churchill College September 1996 A dissertation submitted in candidature for the degree of Doctor of Philosophy in the University of Cambridge i `Glaucon: ª...But how did you mean the study of astronomy to be reformed, so as to serve our pur- poses?º Socrates: ªIn this way. These intricate traceries on the sky are, no doubt, the loveliest and most perfect of material things, but still part of the visibleworld, and therefore they fall far short of the true realities Ð the real relativevelocities,in theworld of purenumber and all geometrical ®gures, of the movements which carry round the bodies involved in them. These, you will agree, can be conceived by reason and thought, not by the eye.º Glaucon: ªExactly.º Socrates: ªAccordingly, we must use the embroidered heaven as a model to illustrateour study of these realities, just as one might use diagrams exquisitely drawn by some consummate artist like Daedalus. An expert in geometry, meeting with such designs, would admire their ®nished workmanship, but he wouldthink it absurd to studythem in all earnest with the expectation of ®nding in their proportionsthe exact ratio of any one number to another...º ' Ð Plato (429±347 BC), The Republic, trans. F.M. Cornford. ii Contents 1 Introduction 1 1.1 Thisthesis...................................... ... 1 1.2 Abriefhistory................................... .... 2 1.3 Synchrotronphysics........ ........... ........... ...... 4 1.4 Currentobservationalknowledgeintheradio . ............. 5 1.4.1 Jets ........................................ 6 1.4.2 Coresornuclei ................................. 6 1.4.3 Hotspots ..................................... 7 1.4.4 Largescalestructure . .... 7 1.4.5 Theradiosourcemenagerie . .... 8 1.4.6 Observationaltrends .
    [Show full text]
  • Galaxy Data Name Constell
    Galaxy Data name constell. quadvel km/s z type width ly starsDist. Satellite Milky Way many many 0 0.0000 SBbc 106K 200M 0 M31 Andromeda NQ1 -301 -0.0010 SA 220K 1T 2.54Mly M32 Andromeda NQ1 -200 -0.0007 cE2 Sat. 5K 2.49Mly M31 M110 Andromeda NQ1 -241 -0.0008 dE 15K 2.69M M31 NGC 404 Andromeda NQ1 -48 -0.0002 SA0 no 10M NGC 891 Andromeda NQ1 528 0.0018 SAb no 27.3M NGC 680 Aries NQ1 2928 0.0098 E pec no 123M NGC 772 Aries NQ1 2472 0.0082 SAb no 130M Segue 2 Aries NQ1 -40 -0.0001 dSph/GC?. 100 5E5 114Kly MW NGC 185 Cassiopeia NQ1 -185 -0.0006dSph/E3 no 2.05Mly M31 Dwingeloo 1 Cassiopeia NQ1 110 0.0004 SBcd 25K 10Mly Dwingeloo 2 Cassiopeia NQ1 94 0.0003Iam no 10Mly Maffei 1 Cassiopeia NQ1 66 0.0002 S0pec E3 75K 9.8Mly Maffei 2 Cassiopeia NQ1 -17 -0.0001 SABbc 25K 9.8Mly IC 1613 Cetus NQ1 -234 -0.0008Irr 10K 2.4M M77 Cetus NQ1 1177 0.0039 SABd 95K 40M NGC 247 Cetus NQ1 0 0.0000SABd 50K 11.1M NGC 908 Cetus NQ1 1509 0.0050Sc 105K 60M NGC 936 Cetus NQ1 1430 0.0048S0 90K 75M NGC 1023 Perseus NQ1 637 0.0021 S0 90K 36M NGC 1058 Perseus NQ1 529 0.0018 SAc no 27.4M NGC 1263 Perseus NQ1 5753 0.0192SB0 no 250M NGC 1275 Perseus NQ1 5264 0.0175cD no 222M M74 Pisces NQ1 857 0.0029 SAc 75K 30M NGC 488 Pisces NQ1 2272 0.0076Sb 145K 95M M33 Triangulum NQ1 -179 -0.0006 SA 60K 40B 2.73Mly NGC 672 Triangulum NQ1 429 0.0014 SBcd no 16M NGC 784 Triangulum NQ1 0 0.0000 SBdm no 26.6M NGC 925 Triangulum NQ1 553 0.0018 SBdm no 30.3M IC 342 Camelopardalis NQ2 31 0.0001 SABcd 50K 10.7Mly NGC 1560 Camelopardalis NQ2 -36 -0.0001Sacd 35K 10Mly NGC 1569 Camelopardalis NQ2 -104 -0.0003Ibm 5K 11Mly NGC 2366 Camelopardalis NQ2 80 0.0003Ibm 30K 10M NGC 2403 Camelopardalis NQ2 131 0.0004Ibm no 8M NGC 2655 Camelopardalis NQ2 1400 0.0047 SABa no 63M Page 1 2/28/2020 Galaxy Data name constell.
    [Show full text]
  • Epps Seth.Pdf (4.042Mb)
    Large-Scale Filaments From Weak Lensing by Seth Epps A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Physics Waterloo, Ontario, Canada, 2015 c Seth Epps 2015 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In the context of non-linear structure formation, a web of dark filaments are expected to intersect the high density regions of the universe, where groups and clusters of galaxies will be forming. In this work we have developed a method for stacking the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. We detect a the weak lensing signal from stacked filaments between SDSS BOSS luminous red galaxies 13 with the CFHTLenS data at the 5σ level, finding a mass of (1:6 ± 0:3) × 10 M . Two methods of isolating the filament signal are presented: the method of non-physical pair subtraction, and the method of outside region subtraction. This signal is compared with the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al.(2014), yielding reasonably good agreement. iii Acknowledgements I would like to thank my adviser Mike Hudson for his guidance, patience, and contributions. iv Table of Contents List of Figures vii 1 Introduction1 1.1 Structure Formation..............................2 1.1.1 Linear Structure Formation......................2 1.1.2 Non-Linear Structure Formation....................4 1.2 Weak Gravitational Lensing..........................8 1.2.1 Galaxy-Galaxy Lensing........................
    [Show full text]
  • A Filament of Dark Matter Between Two Clusters of Galaxies
    A filament of dark matter between two clusters of galaxies Jorg¨ P. Dietrich1, Norbert Werner2, Douglas Clowe3, Alexis Finoguenov4, Tom Kitching5, Lance Miller6 & Aurora Simionescu2 1Physics Dept. and Michigan Center for Theoretical Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040, USA 2Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA 3Dept.of Physics & Astronomy, Ohio University, Clippinger Lab 251B, Athens, OH 45701, USA 4Max-Planck-Institut fur¨ extraterrestrische Physik, Giessenbachstraße, 85748 Garching b. Munchen,¨ Germany 5Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edin- burgh EH9 3HJ, U.K. 6Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Road, Ox- ford OX1 3RH, U.K. It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments1. The thread-like structure of this “cosmic web” has been traced by galaxy redshift surveys for decades2,3. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift fila- ments has been observed in emission4 and absorption5, 6. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter7, remained elusive, as earlier candidates for such detections8–10 were either falsified11, 12 or suffered from low signal-to-noise ratios8, 10 and unphysical misalignements of dark and lumi- nous matter9,10. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lens- ing signal, both in a non-parametric mass reconstruction and in parametric model fits.
    [Show full text]
  • ISO's Contribution to the Study of Clusters of Galaxies
    ISO's Contribution to the Study of Clusters of Galaxies ∗ Leo Metcalfe1 ([email protected]), Dario Fadda2, Andrea Biviano3 1XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, PO Box 50727, 28080 Madrid, Spain 2Spitzer Science Center, California Institute of Technology, Mail code 220-6, 1200 East California Boulevard, Pasadena, CA 91125 3INAF - Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy Abstract. Starting with nearby galaxy clusters like Virgo and Coma, and continu- ing out to the furthest galaxy clusters for which ISO results have yet been published (z =0:56), we discuss the development of knowledge of the infrared and associated physical properties of galaxy clusters from early IRAS observations, through the “ISO-era” to the present, in order to explore the status of ISO’s contribution to this field. Relevant IRAS and ISO programmes are reviewed, addressing both the cluster galaxies and the still-very-limited evidence for an infrared-emitting intra-cluster medium. ISO made important advances in knowledge of both nearby and distant galaxy clusters, such as the discovery of a major cold dust component in Virgo and Coma cluster galaxies, the elaboration of the correlation between dust emission and Hubble- type, and the detection of numerous Luminous Infrared Galaxies (LIRGs) in several distant clusters. These and consequent achievements are underlined and described. We recall that, due to observing time constraints, ISO’s coverage of higher- redshift galaxy clusters to the depths required to detect and study statistically significant samples of cluster galaxies over a range of morphological types could not be comprehensive and systematic, and such systematic coverage of distant clusters will be an important achievement of the Spitzer Observatory.
    [Show full text]