Novitaltesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK

Total Page:16

File Type:pdf, Size:1020Kb

Novitaltesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET NEW YORK NovitaltesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET NEW YORK. N.Y. 10024 U.S.A. NUMBER 2705 OCTOBER 28, 1980 WILLIAM A. SHEAR A Review of the Cyphophthalmi of the United States and Mexico, with a Proposed Reclassification of the Suborder (Arachnida, Opiliones) AMERICANt MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2705, pp. 1-34, figs. 1-33, tables 1-4, 1 map October 28, 1980 A Review of the Cyphophthalmi of the United States and Mexico, with a Proposed Reclassification of the Suborder (Arachnida, Opiliones) WILLIAM A. SHEAR' ABSTRACT The species of cyphophthalmid opilionids The new family Pettalidae is proposed for Pettal- known from the United States and Mexico are us, Purcellia, Parapurcellia, Neopurcellia, Spe- surveyed. The genus Neosiro is considered a syn- leosiro, Rakaia, and Chileogovea. the subfamily onym of Siro; Siro sonoma is described as new. Stylocellinae Hansen and Sorensen is raised to The male genitalia of S. exilis, S. kamiakensis, family rank and redefined to include only the ge- and S. acaroides are illustrated for the first time, nus Stylocellus. For the genera Ogovea and Hui- and the male of Neogovea mexasca is newly de- taca, the new family Ogoveidae is proposed, and scribed. A new scheme of family-level classifi- for the genera Neogovea, Paragovia, and Meta- cation is proposed for the suborder worldwide. govea, the new family Neogoveidae. The new ar- The family Sironidae Simon is redefined to in- rangement is based upon a cladistic analysis. Ar- clude the genera Siro, Parasiro, Tranteeva, guments against Savory's 1977 proposal to Odonotosiro, Metasiro, Paramiopsalis, and Su- consider the Cyphophthalmi an order of Arach- zukielus. Troglosiro is placed here provisionally. nida separate from Opiliones are presented. INTRODUCTION Opilionids of the suborder Cyphophthalmi "harvestmen." Because of their restrictive are mitelike creatures inhabiting caves, for- habits, these animals are not likely to dis- est litter, and soil crevices. Their short legs tribute themselves with ease and therefore and armored, egg-shaped bodies are far from could be of considerable importance in bio- the usual concept of "daddy-long-legs" or geography (Juberthie and Massoud, 1976). 1 Research Associate, Department of Entomology, American Museum of Natural History; Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943. Copyright © American Museum of Natural History 1980 ISSN 0003-0082 / Price $2.35 2 AMERICAN MUSEUM NOVITATES NO. 2705 At first considered among the rarest of arach- phophthalmids (Shear, 1977, 1979a, 1979b) nids, the cyphophthalmids have been the it has become obvious that the present subject, in the last two or three decades, of scheme of classification, especially at the a virtual explosion of knowledge and inter- level of the family, no longer reflects all that est, which, paradoxically, has not been fully we have learned about the group. In partic- incorporated into their classification. Fur- ular, as Hoffman (1963) accurately predicted, ther, no comprehensive review of the group the grouping of all forms into one family Si- in America has been carried out. ronidae, with two subfamilies Sironinae and The first cyphophthalmid opilionid known Stylocellinae, is quite inadequate to repre- from the United States, Siro acaroides (Ew- sent the knowledge that has accumulated ing) of Oregon, was described in 1923. Dur- concerning the probable evolutionary rela- ing the next 20 years, only two new species tionships of the described genera and were described: Siro americanus Davis from species. Therefore, the purpose of the sec- Florida (Davis, 1933) and Neosiro kamia- ond part of this paper is to propose a new kensis Newell from Washington (Newell, family-level classification for the suborder 1943). Only the work of Newell, including a Cyphophthalmi. In addition, the recent pro- redescription of acaroides published in 1947, posal of Savory (1977) that the suborder be can be said to meet modern standards for raised to full ordinal status will be critically taxonomic work. By far the most valuable examined. contribution on the suborder in America was that of Hoffman (1963), who described Siro ACKNOWLEDGMENTS exilis from the central Appalachian region, critically reviewed previous work, and set up I am grateful to Dr. Norman Platnick of a new genus, Floridogovea, for S. ameri- the American Museum of Natural History canus. He also drew attention to the useful- for the loan of specimens and for his com- ness in classification of the sternal region of ments on the manuscript. Specimens were the cephalothorax, particularly the relation- also lent by Dr. H. W. Levi, Museum of ships of the coxal elements to the gonos- Comparative Zoology, Mr. Henry Dybas, tome. Hoffman did not examine the male Field Museum of Natural History, Dr. Paul genitalia of any of the American species, al- Arnaud, California Academy of Sciences, though it had been known for some time that Mr. Rod Crawford, University of Washing- the form of the penis is of great importance ton (Seattle) Museum, Dr. S. Tuxen, Uni- in taxonomy. He was also evidently unaware versitets Museum, K0benhavn, and Mr. F. of a paper by Juberthie (1960) redescribing Wanless, British Museum (Natural History). S. americanus in detail, and giving it the new Dr. William B. Muchmore lent material from generic name Metasiro. Juberthie provided his personal collection, as did Dr. Richard the first illustrations of the male genitalia of L. Hoffman. an American species. Finally, Shear (1977) Knowledge of the distribution of Siro aca- described, from female specimens, the first roides comes largely from a sampling pro- troglobitic cyphophthalmid from the New gram carried out by Dr. Ellen Benedict, Port- World, Neogovea mexasca, collected in a land State University, Portland, Oregon. She cave in Oaxaca, Mexico. generously allowed me to sort opilionids The purpose of the first part of this paper from her material. is to review briefly our knowledge of a bio- Drs. Jochen Martens, Ray Foster, and Jur- geographically important group of soil ani- gen Gruber read the second section of the mals in North America, providing compre- manuscript and made valuable comments, hensive data on distribution and illustrating but the ideas expressed there are the full re- taxonomic features not heretofore described. sponsibility of the author. I am also most In addition, a remarkable new species from grateful to Mr. Theodore Savory for his cor- California has been discovered. During the respondence. course of this investigation and others on cy- Finally, I thank the Faculty Research 1980 SHEAR: CYPHOPHTHALMI 3 Committee of Hampden-Sydney College for generous financial support. ABBREVIATIONS AMNH, American Museum of Natural History, New York MCZ, Museum of Comparative Zoology, Harvard University, Cambridge FMNH, Field Museum of Natural History, Chi- cago CAS, California Academy of Sciences, San Fran- cisco UWM, University of Washington Museum, Se- attle WBM, personal collection of William B. Much- MAP 1. Distribution of cyphophthalmid opili- more, Rochester onids in the United States. Open circle enclosed in WAS, personal collection of William A. Shear, solid line, Siro exilis. Filled circles, Metasiro Hampden-Sydney americanus. Open triangles enclosed in solid line, Siro acaroides. Filled triangles, Siro kamiakensis. THE NORTH AMERICAN Filled square, Siro sonoma. Open square, single female specimen of undescribed probable new CYPHOPHTHALMID FAUNA species. Hoffman (1963), Juberthie (1970) and Shear (1977) have discussed in some detail the usefulness of various taxonomic charac- ters in the study of the Cyphophthalmi. To Cyphophthalmus Joseph, 1868, p. 249 (type summarize, the characters most useful at the species, C. duricorius, Joseph by original des- level of species seem to be the form and lo- ignation). Rosas Costa, 1950, p. 145 (complete references). cation of the adenostyle of the male, the Holosiro Ewing, 1923, p. 388 (type species, H. shape and spination of the penis, the rela- acaroides Ewing, by original designation). tionships of the elements of the ventral tho- Roewer, 1927, p. 266. Hinton, 1938, p. 332. racic complex to the gonostome, and the pro- Neosiro Newell, 1943, p. 416 (type species, N. portions of the bodies of both sexes. These kamiakensis Newell, by original designation). characters, if concepts are appropriately Rosas Costa, 1950, p. 142. Hoffman, 1963, p. broadened, remain useful for distinguishing 133. Juberthie 1969, p. 1383. New Subjective related groups of species as genera, but to Synonymy. these we must add the degree of fusion of DIAGNOSIS: Metasiro is the only other si- the coxae to one another and to the dorsum, ronid genus found in North America; the the presence or absence of teeth on the males of its single species have a fimbriate claws, modifications of the male anal region, adenostyle rim giving the appearance of a the position of the ozophores, and the den- tuft of setae; in Siro species the adenostyle tition of the cheliceral fingers. is lamelliform. DESCRIPTION: See Juberthie (1967, 1969). FAMILY SIRONIDAE SIMON The former reference is to a detailed rede- SIRO LATRIELLE scription of S. rubens, the type species. DISTRIBUTION: Europe; Appalachians in Siro Latrielle, 1804, p. 329 (type species, S. ru- North the Pacific coast bens Latrielle, by original designation). Hansen eastern America, and S6rensen, 1904, p. 88, p. 107. Roewer, from Washington to northern California; 1923, p. 52; 1927, p. 266. Hinton, 1938, p. 331. western Washington and adjoining regions of Rosas Costa, 1950, p. 145 (complete references northern Idaho. to 1948). Hoffman, 1963, p. 132. Juberthie, NOTES: Species of Siro are united by the 1969, p. 1383. Martens, 1978, p. 60. form of the adenostyle, ventral complex, and 4 AMERICAN MUSEUM NOVITATES NO. 2705 penis, as well as some additional characters plate has a median ridge (figs. 6, 11), and in discussed by Juberthie (1969). Neosiro was S.
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Opiliones, Palpatores, Caddoidea)
    Shear, W. A. 1975 . The opilionid family Caddidae in North America, with notes on species from othe r regions (Opiliones, Palpatores, Caddoidea) . J. Arachnol . 2:65-88 . THE OPILIONID FAMILY CADDIDAE IN NORTH AMERICA, WITH NOTES ON SPECIES FROM OTHER REGION S (OPILIONES, PALPATORES, CADDOIDEA ) William A . Shear Biology Departmen t Hampden-Sydney, College Hampden-Sydney, Virginia 23943 ABSTRACT Species belonging to the opilionid genera Caddo, Acropsopilio, Austropsopilio and Cadella are herein considered to constitute the family Caddidae . The subfamily Caddinae contains the genu s Caddo ; the other genera are placed in the subfamily Acropsopilioninae. It is suggested that the palpatorid Opiliones be grouped in three superfamilies : Caddoidea (including the family Caddidae) , Phalangioidea (including the families Phalangiidae, Liobunidae, Neopilionidae and Sclerosomatidae ) and Troguloidea (including the families Trogulidae, Nemostomatidae, Ischyropsalidae an d Sabaconidae). North American members of the Caddidae are discussed in detail, and a new species , Caddo pepperella, is described . The North American caddids appear to be mostly parthenogenetic, an d C. pepperella is very likely a neotenic isolate of C. agilis. Illustrations and taxonomic notes ar e provided for the majority of the exotic species of the family . INTRODUCTION Considerable confusion has surrounded the taxonomy of the order Opiliones in North America, since the early work of the prolific Nathan Banks, who described many of ou r species in the last decade of the 1800's and the first few years of this century. For many species, no additional descriptive material has been published following the original de- scriptions, most of which were brief and concentrated on such characters as color and body proportions .
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • (Opiliones: Monoscutidae) – the Genus Pantopsalis
    Tuhinga 15: 53–76 Copyright © Te Papa Museum of New Zealand (2004) New Zealand harvestmen of the subfamily Megalopsalidinae (Opiliones: Monoscutidae) – the genus Pantopsalis Christopher K. Taylor Department of Molecular Medicine and Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand ([email protected]) ABSTRACT: The genus Pantopsalis Simon, 1879 and its constituent species are redescribed. A number of species of Pantopsalis show polymorphism in the males, with one form possessing long, slender chelicerae, and the other shorter, stouter chelicerae. These forms have been mistaken in the past for separate species. A new species, Pantopsalis phocator, is described from Codfish Island. Megalopsalis luna Forster, 1944 is transferred to Pantopsalis. Pantopsalis distincta Forster, 1964, P. wattsi Hogg, 1920, and P. grayi Hogg, 1920 are transferred to Megalopsalis Roewer, 1923. Pantopsalis nigripalpis nigripalpis Pocock, 1902, P. nigripalpis spiculosa Pocock, 1902, and P. jenningsi Pocock, 1903 are synonymised with P. albipalpis Pocock, 1902. Pantopsalis trippi Pocock, 1903 is synonymised with P. coronata Pocock, 1903, and P. mila Forster, 1964 is synonymised with P. johnsi Forster, 1964. A list of species described to date from New Zealand and Australia in the Megalopsalidinae is given as an appendix. KEYWORDS: taxonomy, Arachnida, Opiliones, male polymorphism, sexual dimorphism. examines the former genus, which is endemic to New Introduction Zealand. The more diverse Megalopsalis will be dealt with Harvestmen (Opiliones) are abundant throughout New in another publication. All Pantopsalis species described to Zealand, being represented by members of three different date are reviewed, and a new species is described. suborders: Cyphophthalmi (mite-like harvestmen); Species of Monoscutidae are found in native forest the Laniatores (short-legged harvestmen); and Eupnoi (long- length of the country, from the Three Kings Islands in the legged harvestmen; Forster & Forster 1999).
    [Show full text]
  • Arachnida: Opiliones) Release Contact Pheromones During Mating?
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 184–191, 2016 http://www.eje.cz doi: 10.14411/eje.2016.022 ORIGINAL ARTICLE Do sexually dimorphic glands in the harvestman Gryne perlata (Arachnida: Opiliones) release contact pheromones during mating? JÉSSICA M. DIAS 1, 2 and RODRIGO H. WILLEMART 1, 2, 3, * 1 Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo – SP, 03828-000 Brazil; e-mails: [email protected], [email protected] 2 Programa de Pós Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo – SP, 05508-090 Brazil 3 Programa de Pós Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel, 275, Jardim Eldorado, Diadema – SP, 09972-270 Brazil Key words. Arachnida, Opiliones, Laniatores, Cosmetidae, Gryne perlata, Gonyleptidae, Discocyrtus pectinifemur, chemical communication, copulation, sexually dimorphic glands Abstract. There are records of glands that produce sexual pheromones that are released into the environment or applied directly on sexual partners. Within Opiliones (Arachnida), several harvestmen in the suborder Laniatores have sexually dimorphic glands on legs I and IV, the mode of use of which is recorded only in two species but their function is unknown: while walking, males rub the glands against the substrate or against their body. Here we test an alternative and non-exclusive hypothesis that the glands present on the legs of male Gryne perlata (Cosmetidae) produce contact pheromones used in mating.
    [Show full text]
  • A Multilocus Phylogeny of Podoctidae
    Molecular Phylogenetics and Evolution 106 (2017) 164–173 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal the disutility of subfamilial nomenclature in armored harvestman systematics ⇑ Prashant P. Sharma a, , Marc A. Santiago b, Ricardo Kriebel c, Savana M. Lipps a, Perry A.C. Buenavente d, Arvin C. Diesmos d, Milan Janda e,f, Sarah L. Boyer g, Ronald M. Clouse b, Ward C. Wheeler b a Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA b Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA c Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA d Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines e Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Antigua Carretera a Pátzcuaro, 8701 Morelia, Mexico f Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic g Biology Department, Macalester College, 1600 Grand Avenue, St. Paul, MN 55105, USA article info abstract Article history: The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various Received 9 August 2016 sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of Accepted 20 September 2016 articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems Available online 21 September 2016 in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data.
    [Show full text]
  • Opiliones, Gonyleptidae) with Description of a New and Independently Evolved Case of Paternal Care in Harvestmen
    2009. The Journal of Arachnology 37:127–134 Reproductive behavior of Chavesincola inexpectabilis (Opiliones, Gonyleptidae) with description of a new and independently evolved case of paternal care in harvestmen Taı´s M. Nazareth: Programa de Po´s-graduac¸a˜o em Ecologia e Conservac¸a˜o de Recursos Naturais, Universidade Federal de Uberlaˆndia, CP 593, 38400-902 Uberlaˆndia, MG, Brazil Glauco Machado1: Departamento de Ecologia, Instituto de Biocieˆncias, Rua do Mata˜o, trav. 14, nu 321, 05508-900, Sa˜o Paulo, SP, Brazil Abstract. In this paper, we investigate the reproductive behavior of the gonyleptid Chavesincola inexpectabilis Soares & Soares 1946 (Heteropachylinae) and provide basic descriptive information about courtship, copulation, oviposition, and paternal care. Like most gonyleptids, males of C. inexpectabilis have a strong armature on the fourth pair of legs and use their spines and apophyses to fight other males and to repel them from their nesting sites. The mating pair interacts briefly before copulation, but the male touches the female both during and after penetration while she oviposits. The oviposition behavior differs markedly from that of other Laniatores: females hold the eggs on the chelicerae before depositing them on the substrate. After oviposition, the eggs are left under the guard of the male to defend against attack from cannibalistic conspecifics. Mapping the available data on reproductive biology of the Gonyleptidae on the phylogeny of the family, it is possible to infer that paternal care has evolved at least three times independently: once in the clade Progonyleptoidellinae + Caelopyginae, once in the Gonyleptinae, and once in the Heteropachylinae, which occupies a basal position within the group.
    [Show full text]
  • Carinostoma Elegans New to the Slovakian Harvestmen Fauna (Opiliones, Dyspnoi, Nemastomatidae)
    Arachnologische Mitteilungen 48: 16-23 Karlsruhe, Dezember 2014 Carinostoma elegans new to the Slovakian harvestmen fauna (Opiliones, Dyspnoi, Nemastomatidae) Anna Šestáková & Ivan Mihál doi: 10.5431/aramit4804 Abstract. A new genus and species of small harvestman was found for the first time in Slovakia – Carinostoma elegans (Sørensen, 1894). One male and two females were collected in the Mlyňany arboretum of the Slovak Academy of Science (western Slovakia). Descriptions and photographs of both sexes of C. elegans are provided. Additional com- ments, and a map of distribution of all species of this genus, are provided. Keywords: arboretum, faunistics, harvestmen, new record, western Slovakia Zusammenfassung. Carinostoma elegans neu für die Weberknechtfauna der Slowakei (Opiliones, Dyspnoi, Nemastomatidae). Eine neue Weberknechtgattung und –art wurde erstmals in der Slowakische Republik nachge- wiesen – Carinostoma elegans (Sørensen, 1894). Ein Männchen und zwei Weibchen wurden im Mlyňany Arboretum der Slovakischen Akademie der Wissenschaften nachgewiesen. Beide Geschlechter sowie die Verbreitung der Art werden beschrieben und abgebildet. Altogether five species in three genera from the and the number of genera increases to 25 (Bezděčka family Nemastomatidae are known to occur in Slo- & Bezděčková 2011, Mihál & Astaloš 2011). As the vakia. During a brief zoological investigation into species is new to the Slovakian harvestmen fauna, we the arachnid fauna in the arboretum Mlyňany of provide a description of its morphology and compare the Slovak Academy of Science three specimens of its distribution to other species of the genus. a harvestman so far not known as a member of the Slovakian opilionid fauna were found. The specimens Methods were identified asCarinostoma elegans Sørensen, 1894.
    [Show full text]
  • Biodiversity of the Huautla Cave System, Oaxaca, Mexico
    diversity Communication Biodiversity of the Huautla Cave System, Oaxaca, Mexico Oscar F. Francke, Rodrigo Monjaraz-Ruedas † and Jesús A. Cruz-López *,‡ Colección Nacional De Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico; [email protected] (O.F.F.); [email protected] (R.M.-R.) * Correspondence: [email protected] † Current address: San Diego State University, San Diego, CA 92182, USA. ‡ Current address: Instituto Nacional de Investigaciones Agrícolas y Pecuarias del Valle de Oaxaca, Santo Domingo Barrio Bajo, Etla C. P. 68200, Mexico. Abstract: Sistema Huautla is the deepest cave system in the Americas at 1560 m and the fifth longest in Mexico at 89,000 m, and it is a mostly vertical network of interconnected passages. The surface landscape is rugged, ranging from 3500 to 2500 masl, intersected by streams and deep gorges. There are numerous dolinas, from hundreds to tens of meters in width and depth. The weather is basically temperate subhumid with summer rains. The average yearly rainfall is approximately 2500 mm, with a monthly average of 35 mm for the driest times of the year and up to 500 mm for the wettest month. All these conditions play an important role for achieving the highest terrestrial troglobite diversity in Mexico, containing a total of 35 species, of which 27 are possible troglobites (16 described), including numerous arachnids, millipedes, springtails, silverfish, and a single described species of beetles. With those numbers, Sistema Huautla is one of the richest cave systems in the world. Keywords: troglobitics; arachnids; insects; millipedes Citation: Francke, O.F.; Monjaraz-Ruedas, R.; Cruz-López, J.A.
    [Show full text]
  • Arachnida, Opiliones) of Uncertain Position from Oaxacan Caves, Mexico
    Shearogovea, a New Genus of Cyphophthalmi (Arachnida, Opiliones) of Uncertain Position from Oaxacan Caves, Mexico The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Giribet, Gonzalo. 2011. “Shearogovea, a New Genus of Cyphophthalmi (Arachnida, Opiliones) of Uncertain Position from Oaxacan Caves, Mexico.” Breviora 528 (November 11): 1–7. doi:10.3099/528.1. Published Version doi:10.3099/528.1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34872804 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA US ISSN 0006-9698 CAMBRIDGE,MASS.11NOVEMBER 2011 NUMBER 528 SHEAROGOVEA, A NEW GENUS OF CYPHOPHTHALMI (ARACHNIDA, OPILIONES) OF UNCERTAIN POSITION FROM OAXACAN CAVES, MEXICO GONZALO GIRIBET1 ABSTRACT. Shearogovea gen. nov. is erected for Neogovea mexasca Shear, 1977, a troglobitic cyphophthalmid species from a cave system in Oaxaca, Mexico. The new genus does not show affinity to Neogovea Hinton, 1938, as it lacks the characteristic toothed claw of leg II or the fusion of the coxae of legs II to those of legs III (which are in turn fused to coxae of legs IV). Shearogovea gen. nov. is probably not related to other Neotropical neogoveid genera, but its exact phylogenetic position remains unresolved. KEY WORDS: troglobite; Mexico; new genus; Neogoveidae; Sironidae INTRODUCTION established for Cyphophthalmi, and Neogo- veidae Shear, 1980 was designated for the Shear (1977) reviewed the Neotropical genera Metagovea Rosas Costa, 1950, Paro- genus Neogovea Hinton, 1938 and described govia Hansen, 1921 [misspelled as Paragovia] two new species, N.
    [Show full text]
  • Catálogo De Autoridades Taxonómicas De Arachnidae
    Catálogo de Autoridades Taxonómicas de Arachnidae Tomado de: Jiménez y Nieto 2005. Biodiv. del orden Araneae de las Islas del G. de Cal. (BK006); Kury y Cokendolpher (Opiliones); Lourenco y Sissom (Scorpiones). 2000. En: Llorente, et al., (eds.). Biodiv., taxon. y biog. de artróp. Méx. II. e ITIS, 2005 Araneae Opisthothelae Araneomorphae Anyphaenidae Hibana (Chamberlin, 1919) Hibana incursa (Chamberlin, 1919) Sinónimo Hibana johnstoni (Chamberlin, 1924) Hibana nigrifrons (Chamberlin & Woodbury, 1929) Araneidae Argiope (Fabricius, 1775) Argiope argentata (Fabricius, 1775) Sinónimo Argiope carinata C. L. Koch, 1871 Argiope cuyunii Hingston, 1932 Argiope filiargentata Hingston, 1932 Argiope filinfracta Hingston, 1932 Argiope gracilenta (Roewer, 1942) Argiope hirta Taczanowski, 1879 Argiope indistincta Mello-Leitão, 1944 Argiope panamensis (Chamberlin, 1917) Argiope submaronica Strand, 1916 Argiope waughi Simon, 1896 Argiope trifasciata (Forskål, 1775) Sinónimo Argiope abalosi Mello-Leitão, 1942 Argiope avara Thorell, 1859 Argiope plana L. Koch, 1867 Argiope platycephala (Caporiacco, 1947) Argiope pradhani Sinha, 1952 Argiope seminola Chamberlin & Ivie, 1944 Argiope stenogastra Mello-Leitão, 1945 Cyclosa (Walckenaer, 1842) Cyclosa turbinata (Walckenaer, 1842) Sinónimo Cyclosa culta O. P.-Cambridge, 1893 Cyclosa glomosa (Walckenaer, 1842) Cyclosa index O. P.-Cambridge, 1889 Cyclosa nanna Ivie & Barrows, 1935 Cyclosa tuberculifera O. P.-Cambridge, 1898 Cyclosa vanbruyseli (Becker, 1879) Cyclosa walckenaeri (O. P.-Cambridge, 1889) Sinónimo Cyclosa
    [Show full text]