Hypnotic Relaxation and Insomnia: a Simple Solution? Harry E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comparison of Stimulus Control Procedures and Progressive Relaxation in the Treatment of Insomnia Mark L
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1979 A Comparison of Stimulus Control Procedures and Progressive Relaxation in the Treatment of Insomnia Mark L. Balen Eastern Illinois University This research is a product of the graduate program in Psychology at Eastern Illinois University. Find out more about the program. Recommended Citation Balen, Mark L., "A Comparison of Stimulus Control Procedures and Progressive Relaxation in the Treatment of Insomnia" (1979). Masters Theses. 3170. https://thekeep.eiu.edu/theses/3170 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPJ<:R CERTIFICATE #2 TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Bo(!th Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Date Author I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because Date Author pdm A Comparison of Stimu1us ControlProcedures and Progressive Relaxation in the Treatment of Insomnia (TITLE) BY Mark L. -
Drugs Inducing Insomnia As an Adverse Effect
2 Drugs Inducing Insomnia as an Adverse Effect Ntambwe Malangu University of Limpopo, Medunsa Campus, School of Public Health, South Africa 1. Introduction Insomnia is a symptom, not a stand-alone disease. By definition, insomnia is "difficulty initiating or maintaining sleep, or both" or the perception of poor quality sleep (APA, 1994). As an adverse effect of medicines, it has been documented for several drugs. This chapter describes some drugs whose safety profile includes insomnia. In doing so, it discusses the mechanisms through which drug-induced insomnia occurs, the risk factors associated with its occurrence, and ends with some guidance on strategies to prevent and manage drug- induced insomnia. 2. How drugs induce insomnia There are several mechanisms involved in the induction of insomnia by drugs. Some drugs affects sleep negatively when being used, while others affect sleep and lead to insomnia when they are withdrawn. Drugs belonging to the first category include anticonvulsants, some antidepressants, steroids and central nervous stimulant drugs such amphetamine and caffeine. With regard to caffeine, the mechanism by which caffeine is able to promote wakefulness and insomnia has not been fully elucidated (Lieberman, 1992). However, it seems that, at the levels reached during normal consumption, caffeine exerts its action through antagonism of central adenosine receptors; thereby, it reduces physiologic sleepiness and enhances vigilance (Benington et al., 1993; Walsh et al., 1990; Rosenthal et al., 1991; Bonnet and Arand, 1994; Lorist et al., 1994). In contrast to caffeine, methamphetamine and methylphenidate produce wakefulness by increasing dopaminergic and noradrenergic neurotransmission (Gillman and Goodman, 1985). With regard to withdrawal, it may occur in 40% to 100% of patients treated chronically with benzodiazepines, and can persist for days or weeks following discontinuation. -
RUNNING HEAD: Anomalous Experiences and Hypnotic Suggestibility
Anomalous experiences and hypnotic suggestibility 1 RUNNING HEAD: Anomalous experiences and hypnotic suggestibility Anomalous experiences are more prevalent among highly suggestible individuals who are also highly dissociative David Acunzo1, Etzel Cardeña2, & Devin B. Terhune3* 1 Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy 2 Department of Psychology, Lund University, Lund, Sweden 3 Department of Psychology, Goldsmiths, University of London, London, UK * Correspondence address: Devin B. Terhune Department of Psychology Goldsmiths, University of London 8 Lewisham Way New Cross, London, UK SE14 6NW [email protected] Word count: 3,186 The data that support the findings of this study are openly available in Open Science Framework at osf.io/cfa3r. Anomalous experiences and hypnotic suggestibility 2 Abstract Introduction: Predictive coding models propose that high hypnotic suggestibility confers a predisposition to hallucinate due to an elevated propensity to weight perceptual beliefs (priors) over sensory evidence. Multiple lines of research corroborate this prediction and demonstrate a link between hypnotic suggestibility and proneness to anomalous perceptual states. However, such effects might be moderated by dissociative tendencies, which seem to account for heterogeneity in high hypnotic suggestibility. We tested the prediction that the prevalence of anomalous experiences would be greater among highly suggestible individuals who are also highly dissociative. Methods: We compared high and low dissociative highly suggestible participants and low suggestible controls on multiple psychometric measures of anomalous experiences. Results: High dissociative highly suggestible participants reliably reported greater anomalous experiences than low dissociative highly suggestible participants and low suggestible controls, who did not significantly differ from each other. Conclusions: These results suggest a greater predisposition to experience anomalous perceptual states among high dissociative highly suggestible individuals. -
THE USE of MIRTAZAPINE AS a HYPNOTIC O Uso Da Mirtazapina Como Hipnótico Francisca Magalhães Scoralicka, Einstein Francisco Camargosa, Otávio Toledo Nóbregaa
ARTIGO ESPECIAL THE USE OF MIRTAZAPINE AS A HYPNOTIC O uso da mirtazapina como hipnótico Francisca Magalhães Scoralicka, Einstein Francisco Camargosa, Otávio Toledo Nóbregaa Prescription of approved hypnotics for insomnia decreased by more than 50%, whereas of antidepressive agents outstripped that of hypnotics. However, there is little data on their efficacy to treat insomnia, and many of these medications may be associated with known side effects. Antidepressants are associated with various effects on sleep patterns, depending on the intrinsic pharmacological properties of the active agent, such as degree of inhibition of serotonin or noradrenaline reuptake, effects on 5-HT1A and 5-HT2 receptors, action(s) at alpha-adrenoceptors, and/or histamine H1 sites. Mirtazapine is a noradrenergic and specific serotonergic antidepressive agent that acts by antagonizing alpha-2 adrenergic receptors and blocking 5-HT2 and 5-HT3 receptors. It has high affinity for histamine H1 receptors, low affinity for dopaminergic receptors, and lacks anticholinergic activity. In spite of these potential beneficial effects of mirtazapine on sleep, no placebo-controlled randomized clinical trials of ABSTRACT mirtazapine in primary insomniacs have been conducted. Mirtazapine was associated with improvements in sleep on normal sleepers and depressed patients. The most common side effects of mirtazapine, i.e. dry mouth, drowsiness, increased appetite and increased body weight, were mostly mild and transient. Considering its use in elderly people, this paper provides a revision about studies regarding mirtazapine for sleep disorders. KEYWORDS: sleep; antidepressive agents; sleep disorders; treatment� A prescrição de hipnóticos aprovados para insônia diminuiu em mais de 50%, enquanto de antidepressivos ultrapassou a dos primeiros. -
An FAQ Explaining the Use of Benzodiazepine Sedative Hypnotic Medications in the Elderly
Pharmacy Quality Measures An FAQ Explaining the Use of Benzodiazepine Sedative Hypnotic Medications in the Elderly by Natalie Bari WHERE DOES THIS MEASURE sures feature medications from the the diagnoses (such as insomnia, agi- FIT INTO THE OVERALL MEDI- American Geriatrics Society’s Beers tation, delirium) that the Beers Criteria CARE PART D STAR RATINGS? Criteria for potentially inappropriate state should be avoided. This measure was endorsed by the medication use in older adults. The Pharmacy Quality Alliance (PQA) original HRM measure discussed the WHAT DOES THIS MEASURE in May 2014. But to date, it has not use of non-benzodiazepine sedative ANALYZE? been adopted by the Medicare Part D hypnotics, but it did not include This measure calculates the percent of Star Ratings program. The measure benzodiazepines as they were listed as patients 65 years of age and older who is often described as an extension “avoid only for treatment of insomnia, have received two or more prescription of the PQA measure on the use of agitation or delirium.” The additional fills for any benzodiazepine sedative high-risk medications in the elderly measure was created to address the hypnotic for a cumulative period of (HRM), which was used in the calcu- concern that an unintended conse- more than 90 days. The benzodiaze- lation of the CMS 2015 Star Ratings quence of the HRM measure would be pine sedative hypnotic medications using 2013 claims data. Both mea- increased use of benzodiazepines for are defined to include estazolam, 32 America’s PHARMACIST | January 2015 temazepam, triazolam, flurazepam, them frequently over a prolonged peri- use of the benzodiazepine agents spe- and quazepam. -
Herbal Remedies and Their Possible Effect on the Gabaergic System and Sleep
nutrients Review Herbal Remedies and Their Possible Effect on the GABAergic System and Sleep Oliviero Bruni 1,* , Luigi Ferini-Strambi 2,3, Elena Giacomoni 4 and Paolo Pellegrino 4 1 Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy 2 Department of Neurology, Ospedale San Raffaele Turro, 20127 Milan, Italy; [email protected] 3 Sleep Disorders Center, Vita-Salute San Raffaele University, 20132 Milan, Italy 4 Department of Medical Affairs, Sanofi Consumer HealthCare, 20158 Milan, Italy; Elena.Giacomoni@sanofi.com (E.G.); Paolo.Pellegrino@sanofi.com (P.P.) * Correspondence: [email protected]; Tel.: +39-33-5607-8964; Fax: +39-06-3377-5941 Abstract: Sleep is an essential component of physical and emotional well-being, and lack, or dis- ruption, of sleep due to insomnia is a highly prevalent problem. The interest in complementary and alternative medicines for treating or preventing insomnia has increased recently. Centuries-old herbal treatments, popular for their safety and effectiveness, include valerian, passionflower, lemon balm, lavender, and Californian poppy. These herbal medicines have been shown to reduce sleep latency and increase subjective and objective measures of sleep quality. Research into their molecular components revealed that their sedative and sleep-promoting properties rely on interactions with various neurotransmitter systems in the brain. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a major role in controlling different vigilance states. GABA receptors are the targets of many pharmacological treatments for insomnia, such as benzodiazepines. Here, we perform a systematic analysis of studies assessing the mechanisms of action of various herbal medicines on different subtypes of GABA receptors in the context of sleep control. -
Drug Class Review on Newer Sedative Hypnotics
Drug Class Review on Newer Sedative Hypnotics Final Report December 2005 The Agency for Healthcare Research and Quality has not yet seen or approved this report The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Susan Carson, MPH Po-Yin Yen, MS Marian S. McDonagh, PharmD Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, MD, MPH, Director Copyright © 2005 by Oregon Health & Science University Portland, Oregon 97201. All rights reserved. Final Report Drug Effectiveness Review Project TABLE OF CONTENTS Introduction....................................................................................................................... 4 Scope and Key Questions ............................................................................................. 4 Methods.............................................................................................................................. 6 Literature Search........................................................................................................... 6 Study Selection ............................................................................................................ -
Cognitive Behavioral Therapy for Insomnia
Cognitive Behavioral Therapy for Insomnia Melanie K. Leggett, PhD, CBSM Duke University Medical Center Disclosures ▪ I have no relevant financial relationship with the manufacturers of any commercial products and/or providers of commercial services discussed in this CME activity. ▪ Neither I or any member of my immediate family has a financial relationship or interest with any proprietary entity producing health care goods or services related to the content of this CME activity. ▪ My content may include reference to commercial products; however, generic and alternative products will be discussed whenever possible. I do not intend to discuss any unapproved or investigative use of commercial products or devices. ▪ This presentation does not represent the views of the Department of Veterans Affairs or the United States Government. 2 Overview ▪ Development and model of insomnia ▪ CBTI components ▪ CBTI therapy ▪ Outcomes ▪ Dissemination 3 Objectives ▪ Participants will understand the conceptual model of insomnia. ▪ Participants will be able to define CBTI, describe the treatment components, and understand the therapeutic rationale. ▪ Participants will understand the indications and contraindications for CBTI and be able to describe treatment efficacy. 4 Development of Insomnia 5 Definition of Insomnia ▪ Insomnia characterized by: ▫ Trouble falling asleep ▫ Trouble staying asleep ▫ Early morning awakenings ▪ Distress/impairment in daytime functioning ▪ Adequate opportunity & circumstances for sleep ▪ At least 3x/week for 3 months ▪ Not better explained by another sleep disorder 6 Sleep Processes Homeostatic System Circadian System Sleep Arousal System 7 Spielman’s Conceptual Model of Insomnia 8 CBTI Components 9 What is CBTI? ▪ Multicomponent regimen 1. Sleep restriction 2. Stimulus control 3. Cognitive therapy 4. Sleep hygiene 5. -
Herbal Remedies and Sleep
HERBAL REMEDIES AND SLEEP • Some people use herbal remedies to treat sleep problems. They may choose this in preference to sleeping pills. • There have been studies on some of these herbs. However, not all of them have been conducted properly. For some herbs, there is virtually no evidence to show whether they are effective or not. • The most frequently studied herbs are Valerian, Kava, Hops, Chamomile, and Passionflower. However, there is little convincing evidence to suggest that they work well for improving sleep. • Some herbal remedies have been associated with adverse health effects. Note: All words that are underlined relate to topics in the Sleep Health Foundation Information Library at www.sleephealthfoundation.org.au 1. Why try herbs to help your sold by a specific manufacturer for a certain time-period. Trials testing effectiveness are expensive, and without a patent, companies may not sleep? be able to recover their costs through guaranteed sales, even if the herb has potential. However, there have been studies of some herbs About 40% of people use alternative or complementary medicines at used for insomnia and anxiety. Here we focus on herbs where least occasionally, and 4.5% use them to treat sleep problem. Some reasonable information exists from clinical research trials. people who are concerned about using sleeping pills will turn to herbal remedies to help them sleep (see our page on Sleeping Tablets). Melatonin is not a herbal remedy (for more information see Melatonin). 3. What does the evidence say about herbs helping sleep? 2. Has the effectiveness of herbs In the table below, we look at the effectiveness of eight herbal remedies in treating sleep problems as treatments of insomnia. -
Public Law 106-172 106Th Congress An
PUBLIC LAW 106-172—FEB. 18, 2000 114 STAT. 7 Public Law 106-172 106th Congress An Act To amend the Controlled Substances Act to direct the^ emergency scheduling of gamma hydroxybutyric acid, to provide for a national awareness campaign, and Feb. 18, 2000 for other piu"poses. [H.R. 2130] Be it enacted by the Senate and House of Representatives of the United States of America in Congress assewMed, Hillory J. Farias and Samantha SECTION 1. SHORT TITLE. Reid Date-Rape Drug Prohibition This Act may be cited as the "Hillory J. IFarias and Samantha Act of 2000. Reid Date-Rape Drug Prohibition Act of 2000". Law enforcement and crimes. SEC. 2. FINDINGS. 21 use 801 note. Congress finds as follows: 21 use 812 note. (1) Gamma hydroxybutyric acid (also called G, Liquid X, Liquid Ecstasy, Grievous Bodily Harm, Georgia Home Boy, Scoop) has become a significant and growing problem in law enforcement. At least 20 States have sclieduled such drug in their drug laws and law enforcement officials have been experi encing an increased presence of the dinig in driving under the influence, sexual assault, and overdose cases especially at night clubs and parties. (2) A behavioral depressant and a hypnotic, gamma hydroxybutyric acid ("GHB") is being used in conjunction with alcohol and other drugs with detrimental effects in an increasing number of cases. It is difficult to isolate the impact of such drug's ingestion since it is so typically taken with an ever-changing array of other drugs £md especially alcohol which potentiates its impact. (3) GHB takes the same path as alcohol, processes via alcohol dehydrogenase, and its symptoms at high levels of intake and as impact builds are comparable to alcohol inges- i- tion/intoxication. -
Creating Stimulus Control 1
Running head: CREATING STIMULUS CONTROL 1 Creating Stimulus Control In a Classroom for Children with Autism Emily Levy California State University, Fresno Emily This is wonderful, best in the class, doesn’t need editing….very very good. CREATING STIMULUS CONTROL 2 CREATING STIMULUS CONTROL 3 Abstract Human behavior, throughout the day, is guided by certain stimuli that signal a person what response or action is required. The term “stimulus control” is used to describe the situation when a behavior occurs in the presence of some stimuli and not others (Cooper, Heron, & Heward, 2006). Stimulus control can be created through differential reinforcement. It is commonly used with children with autism during discrete trial lessons. Stimulus control can be used in a classroom environment to increase the on-task behavior of the students. Keywords: stimulus control, differential reinforcement, classroom, autism CREATING STIMULUS CONTROL 4 Creating Stimulus Control: In a Classroom for Children with Autism It is estimated that one in 110 children in the United States have autism spectrum disorder (Centers for Disease Control and Prevention, 2011). Autism is a developmental disability that affects most children by the age of three years (American Psychiatric Association [DSM-IV-TR], 2000). There is no known cause for autism. The three main characteristics for a diagnosis of autism are deficits in language, deficits in social interactions, and restrictive, repetitive behavior. The field of Applied Behavior Analysis (ABA) implements a behavioral model that is acknowledged as an empirically validated treatment for children with autism (Schreibman, 2000). This behavioral model composes about two-thirds of the established, effective treatments for children with autism as found in the National Standards Project by the National Autism Center (2009). -
Current and Experimental Therapeutics of Insomnia
133 CURRENT AND EXPERIMENTAL THERAPEUTICS OF INSOMNIA DANIEL J. BUYSSE CYNTHIA M. DORSEY 15% (4,5). Epidemiologic studies point to a consistent set of risk factors for insomnia. These include a previous history INSOMNIA: DEFINITIONS, IMPACT, AND of insomnia, increasing age, female gender, psychiatric DIAGNOSIS symptoms and disorders, medical symptoms and disorders, impaired activities of daily living, anxiolytic and hypnotic Definition of Insomnia Symptoms and medication use, and low socioeconomic status. The increas- Disorders ing prevalence of insomnia with age may be explained in large part by increasing comorbidity with medical and psy- Insomnia can refer to either a symptom or clinical disorder. chiatric disorders and medication use. The incidence of in- The symptom of insomnia is the subjective complaint of somnia also increases with age and is greater in women than difficulty falling or staying asleep, poor quality sleep, or men. On the other hand, remission of insomnia decreases inadequate sleep duration, despite having an adequate op- with age and is less common in women. Together, preva- portunity for sleep. Two points in this definition deserve lence, incidence, and remission data indicate that insomnia specific attention. First, insomnia is a subjective complaint is often a chronic condition. Between 50% and 80% of not currently defined by laboratory test results or a specific individuals with insomnia at baseline have a persistent com- duration of sleep or wakefulness. Second, the insomnia plaint after follow-up intervals of 1 to 3.5 years (1,6–8). symptom occurs despite the individual having adequate op- portunity to sleep. This distinguishes insomnia from sleep deprivation, which has different causes, consequences, and Impact of Insomnia clinical presentations.