Uva-DARE (Digital Academic Repository)

Total Page:16

File Type:pdf, Size:1020Kb

Uva-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Endemism in Sardinia: Evolution, ecology, and conservation in the butterfly Maniola nurag Grill, A. Publication date 2003 Link to publication Citation for published version (APA): Grill, A. (2003). Endemism in Sardinia: Evolution, ecology, and conservation in the butterfly Maniola nurag. IBED, Universiteit van Amsterdam. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 B^PWMB-a^ip^pMM»!^p^fppq| | differentiationn in the island endemic Maniola wi< < withh Wil van Ginkeï, Gabriel Nève, and StephB,J.M«iken 13$ $ ^-^ ^ Abstract t Inn butterflies, the distribution areas of widespread species and their endemic relativess are usually vicariant. In Sardinia, the ranges of an endemic and a widespreadd Maniola species overlap, and the two species possibly hybridise. In this paper,, we analyse patterns of genetic differentiation in Maniola nurag and Maniola jurtinajurtina from Sardinia by means of allozyme markers, compare them to mainland M.M. jurtina populations, and interpret the data with regard to the endemic species' evolutionaryy history. Sardinian M. nurag and M. jurtina have equally high levels off genetic variation (H = 0.141-0.270; H = 0.137-0.189) as mainland M. jurtina (H(Hnainlandnainland== 0.141-0.236). Total genie diversity at fifteen polymorphic loci is mostly duee to within population variation (FIS). The close relationship of the two species is illustratedd by the fact, that 63 of the 76 alleles screened are shared by both species. Smalll genetic distance between them (Nei's D = 0.21) indicates that divergence initiatedd after the desiccation of the Mediterranean (+ 3 ma ago), and was possibly associatedd with the abrupt climate changes at the turn from Pliocene to Pleistocene (1.8-33 ma). Geographic patterns in allozyme allele frequencies hint at the existence off hybrizymes, and suggest the presence of hybrids in areas where M. nurag and M.M. jurtina are sympatric. Island populations of neither species show signs of loss off genetic diversity, inbreeding, or bottlenecks. We propose that M. nurag did not resultt from vicariance or dispersal, but originated under sympatric or parapatric conditions,, as a consequence of local adaptation along an environmental gradient. Keywords:: Maniola nurag, butterfly, genetic population structure, hybridisation, endemic,, allozymes, inbreeding, Lepidoptera, Nymphalidae, divergence time Introduction n AA species is usually genetically structured over space and in time. Historical founderr events, bottlenecks, and gene-flow are important evolutionary agents responsiblee for changes in the genetical structure of populations. Assessing genetic variationn across geographic areas can thus provide means to trace the history of thesee populations and eventually the history of species (Avise, 1994; Hewitt, 1999; Schmitt&Seitz,2002). Severall speciation models have been proposed, which are habitually characterized byy the level of gene-flow between diverging populations during the initial stages off speciation {Dobzhansky, 1940). Population divergence in the presence of gene- floww was often considered to be unrealistic. However, a number of theoretical 136 6 studiess have reported the plausibility of sympatric and parapatric speciation, and havee shown that spatially localized interactions along environmental gradients cann facilitate species' differentiation (e.g., Kondrashov & Kondrashov, 1999; Doebelii & Dieckmann, 2000; 2003). Despite this growing theoretical evidence that ecologicallyy driven speciation can occur, empirical studies showing examples for suchh speciation modes still remain scarce (Ogden & Thorpe, 2002; Scriber, 2002; Lushaii et al., 2003). Earlier sympatric speciation models involved ecologically drivenn reproductive isolation associated with adaptation to alternative resources (nichee shift), as was elegantly shown for the host races in the tephritid fly Rhagoletis pomonellapomonella (Bush, 1994) or the large cactus finch Geospiza consirostris (Grant & Grant, 1989).. Recent modelling advances suggest that competition for continuously distributedd resources, driven by sexual selection against intermediate phenotypes, couldd be the driving force for sympatric speciation (Doebeli & Dieckmann, 2003). Intermediatee phenotypes procure fewer resources as a consequence of density- andd frequency-dependent selection, and are selected against under disruptive selectionn (Turelli et al., 2001). Hybridd zones form an ideal environment to study sympatric speciation (Arnold, 1997).. A 'hybrid zone' sensn Arnold (1997) is a geographical area where "two populationss of individuals that are distinguishable on the basis of one or more heritablee characters overlap spatially and temporally and cross to form viable and att least partially fertile offspring." In such a parapatric situation, gene-flow can sloww down or even inhibit differentiation by spreading favourable alleles across the hybridd zone (Kim & Rieseberg, 1999), whereas reinforcement can cause prezygotic reproductivee isolation (Turelli et al., 2001). Reinforcement intensifies mate preferencee (Dobzhansky & Pavlovsky, 1957; Butlin, 1995), and can lead to character displacement.. With character displacement, the differences between sympatric populationss of two species are accentuated as a result of reproductive or ecological interactionss between them (Futuyma, 1998). Although character displacement has generallyy been interpreted as an evolutionary response to secondary contact, it cann also evolve in situ across an environmental gradient, despite continuing gene- floww (Turelli et al., 2001). The existence of hybrid zones and steep genetic clines (Schilthuizenn et al, 1999, Lushai et al., 2003) shows that selection can dominate gene-floww over small spatial scales and therefore allow for parapatric divergence. Inn many hybrid zones, particular allozymes called 'hybrizymes' (Woodruff, 1989) havee been found, representing alleles that are not present or very rare in the parentall taxa, and reflect novel genetic variation (Schilthuizen & Gittenberger, 1994b;; Arntzen, 2001). Hybrid zones have been extensively investigated in plants, andd also in animals (e.g. Barton & Hewitt, 1985; Hewitt, 1988,1999; Schilthuizen & 137 7 Lombaerts/1995;; Arntzen, 2001; Capula, 2002) but only rarely so in Lepidoptera (Aagaard,, 2002; Scriber, 2002; Lushai et al, 2003). Thee distribution areas of widespread species and their endemic relatives are usually disjunctt in butterflies (Dennis et al., 2000). In the genus Maniola (Lepidoptera, Nymphalidae),, however, the Sardinian endemic Maniola nurag (GHILIANI 1852) andd its widespread close relative, Maniola jurtina (L. 1758), are found in sympatry andd possibly hybridise (Grill et al, 2003b, 2003d). In order to find out whether thee present sympatric occurrence of the two species can be best explained under thee assumption of a sympatric, parapatric, or allopatric mode of speciation, we investigatee the population genetic structure in a number of island populations of bothh species, and compare these to continental populations of M. jurtina by means off allozyme markers. As we found ecological as well as morphological support suggestingg that M. nurag and Al jurtina possibly hybridise in Sardinia (Grill et al.,al., 2003b; 2003c), we further evaluate the probability of hybrid occurrence in the Sardiniann Maniola. Allozymess are co-dominant markers and efficient to study population differentiationn in Lepidoptera because of the large number of polymorphic loci {e.g., Raijmannn & Menken, 2000; Nève, 2000; Schmitt & Seitz, 2002), and also provide uss with a straightforward tool to detect interspecific hybridisation (Menken & Ulenber,, 1987; Schilthuizen & Gittenberger, 1994b; Schilthuizen & Lombaerts 1995; Arntzen,, 2001; Capula 2002); diagnostic loci differentiate between species (Hewitt, 1988;; Grant & Grant, 1996; Schilthuizen et al., 1999), and consequently can reveal whetherr hybridisation takes place. Iff the present sympatric occurrence of M. nurag and Al jurtina in Sardinia resulted fromm a sympatric or parapatric speciation event we would expect to find evidence forr reinforcement or disruptive selection on traits that are associated with the use off alternative niches (Mayr, 1963, Bush, 1969). In an early phase of differentiation, mostt alleles at polymorphic loci are still shared between the populations in similarr frequencies, and gene-flow between the diverging populations is large. Geneticc regions that are involved in differential adaptation, however, continue too diverge through selection. In later stages of differentiation, gene-flow will be furtherr reduced, and neutral
Recommended publications
  • Hybrids and Hybrid Zones
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Hybrids and hybrid zones Arnold’s new book on hybridization1, recently reviewed by Ritchie in TREE 2, has brought attention to an old, controversial but revitalized topic in evolutionary biology. The two reviews2,3 we have read share a sceptical attitude towards studies of hybridization lying outside the hybrid zone theory. They consider Arnold’s book too ‘opinionated’2 and ‘an argument for a greater emphasis on the positive role of hybridization in evolution’ rather than a ‘comprehensive review’3. However, one of the merits of the book is that it devotes a great deal of effort towards reconciling divergent approaches to the topic. Arnold dedicates equal importance to animal and plant studies, as acknowledged by Ritchie2, and also puts much emphasis on the analysis of hybrid zones. In fact, when proposing a model for the birth of new evolutionary hybrid lineages he places his ‘new conceptual framework (the evolutionary novelty model)’ within the hybrid zone framework. Our criticism of this proposal is that it may be too rigid to fit scenarios departing from the specific model of hybrid speciation proposed by Grant4, that is, recombinational speciation. In our opinion, relying exclusively on the hybrid zone framework to assess the role of hybrids in evolution is misleading. Hybrid zones usually imply relatively recent events and species with strong reproductive barriers. The tension zone model assumes that hybrid zones are maintained by a balance between selection against hybrid individuals and dispersal of parental individuals into the hybrid zone5.
    [Show full text]
  • An Anomalous Hybrid Zone in Drosophila
    Evolution, 59(12), 2005, pp. 2602±2607 AN ANOMALOUS HYBRID ZONE IN DROSOPHILA ANA LLOPART,1,2 DANIEL LACHAISE,3,4 AND JERRY A. COYNE5,6 1Department of Biological Sciences, University of Iowa, 215 Biology Building (BB), Iowa City, Iowa 52242 2E-mail: [email protected] 3Centre National de la Recherche Scienti®que, Laboratoire Populations, GeÂneÂtique, et Evolution, 91198 Gif sur Yvette Cedex, France 4E-mail: [email protected] 5Department of Ecology and Evolution, University of Chicago, 1101 East 57 Street, Chicago, Illinois 60637 6E-mail: [email protected] Abstract. Despite the genetic tractability of many of Drosophila species, the genus has few examples of the ``classic'' type of hybrid zone, in which the ranges of two species overlap with a gradual transition from one species to another through an area where hybrids are produced. Here we describe a classic hybrid zone in Drosophila that involves two sister species, Drosophila yakuba and D. santomea, on the island of SaÄo TomeÂ. Our transect of this zone has yielded several surprising and anomalous ®ndings. First, we detected the presence of an additional hybrid zone largely outside the range of both parental species. This phenomenon is, to our knowledge, unique among animals. Second, the genetic analysis using diagnostic molecular markers of the ¯ies collected in this anomalous hybrid zone indicates that nearly all hybrid males are F1s that carry the D. santomea X chromosome. This F1 genotype is much more dif®cult to produce in the laboratory compared to the genotype from the reciprocal cross, showing that sexual isolation as seen in the laboratory is insuf®cient to explain the genotypes of hybrids found in the wild.
    [Show full text]
  • Introgressive Hybridization and Phylogenetic Relationships Between Norway, Picea Abies (L.) Karst., and Siberian, P
    Heredity 74 (1995) 464—480 Received 10 December 1993 Genetical Society of Great Britain Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci KONSTANTIN V. KRUTOVSKII*t & FRITZ BERGMANNt 1-Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, GSP- 1 Moscow 1178098-333, Russia and 1-Department of Forest Genetics and Forest Tree Breeding, Georg-August University of GOttingen, Büsgenweg 2, 37077 Gottingen, Germany Weanalysed patterns of genetic variation at 26 isozyme loci across the area of two main forest- forming spruce species in Eurasia, Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (P. obovata Ledeb.). Ten seed samples from distant parts of the P. abies—P. obovata area and from a supposedly wide zone of introgressive hybridization between them were investigated. A very high level of allozyme variation was found in populations of both species. As parameters of gene diversity, the mean number of alleles per locus, percentage of polymorphic loci (95 per cent criterion) and expected heterozygosity averaged 2.8, 61.5 and 0.252 for P. abies and 2.4, 61.5 and 0.213 for P. obovata, respectively. Norway and Siberian spruces turned out to be extremely similar genetically. We did not find any fixed allele differences between them, i.e. there were no diagnostic loci and only a few alleles could be characteristic of some populations. Cluster and multivariate analyses have shown that these two species should be considered as two closely related subspecies or two geographical races of one spruce species undergoing considerable gene exchange.
    [Show full text]
  • Comparison with Mtdna and Evidence for Intragenic Recombination in the Hybrid Zone
    Heredity (2006), 1–10 & 2006 Nature Publishing Group All rights reserved 0018-067X/06 $30.00 www.nature.com/hdy Genealogy of the nuclear b-fibrinogen locus in a highly structured lizard species: comparison with mtDNA and evidence for intragenic recombination in the hybrid zone R Godinho1, B Mendonc¸a1, EG Crespo2 and N Ferrand1,3 1CIBIO – Centro de Investigac¸a˜o em Biodiversidade e Recursos Gene´ticos, Campus Agra´rio de Vaira˜o, 4485-661 Vaira˜o, Portugal; 2Centro de Biologia Ambiental e Departamento de Biologia Animal, Faculdade de Cieˆncias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; 3Departamento de Zoologia e Antropologia, Faculdade de Cieˆncias, Universidade do Porto, Prac¸a Gomes Teixeira, 4099-002 Porto, Portugal The study of nuclear genealogies in natural populations of reveals extensive admixture between two formerly isolated nonmodel organisms is expected to provide novel insights lizard populations while the two mtDNA lineages remain into the evolutionary history of populations, especially when essentially allopatric. In addition, a private b-fibint7 haplotype developed in the framework of well-established mtDNA detected in the single population where both mtDNA lineages phylogeographical scenarios. In the Iberian Peninsula, the were found in sympatry is probably the result of intragenic endemic Schreiber’s green lizard Lacerta schreiberi exhibits recombination between the two more common and divergent two highly divergent and allopatric mtDNA lineages that b-fibint7 haplotypes. Our results suggest that the progressive started to split during the late Pliocene. In this work, we incorporation of nuclear genealogies in investigating the performed a fine-scale analysis of the putative mtDNA ancient demography and admixture dynamics of divergent contact zone together with a global analysis of the patterns genomes will be necessary to obtain a more comprehensive of variation observed at the nuclear b-fibrinogen intron 7 (b- picture of the evolutionary history of organisms.
    [Show full text]
  • Strong Natural Selection on Juveniles Maintains a Narrow Adult Hybrid Zone in a Broadcast Spawner
    vol. 184, no. 6 the american naturalist december 2014 Strong Natural Selection on Juveniles Maintains a Narrow Adult Hybrid Zone in a Broadcast Spawner Carlos Prada* and Michael E. Hellberg Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 Submitted April 28, 2014; Accepted July 8, 2014; Electronically published October 17, 2014 Online enhancement: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.983b0. year, cumulative effects over many years before reproduc- abstract: Natural selection can maintain and help form species tion begins can generate a strong ecological filter against across different habitats, even when dispersal is high. Selection against inferior migrants (immigrant inviability) acts when locally adapted immigrants. Immigrant inviability can act across environ- populations suffer high mortality on dispersal to unsuitable habitats. mental gradients, generating clines or hybrid zones. If re- Habitat-specific populations undergoing divergent selection via im- productive isolation occurs as a by-product of immigrant migrant inviability should thus show (1) a change in the ratio of inviability, new species can arise by natural selection (Dar- adapted to nonadapted individuals among age/size classes and (2) a win 1859; Nosil et al. 2005; Rundle and Nosil 2005; Schlu- cline (defined by the environmental gradient) as selection counter- ter 2009), often occurring across environmental gradients, balances migration. Here we examine the frequencies of two depth- segregated lineages in juveniles and adults of a Caribbean octocoral, where they generate hybrid zones (Endler 1977). Eunicea flexuosa. Distributions of the two lineages in both shallow The segregation of adults of different species into dif- and deep environments were more distinct when inferred from adults ferent habitats is pronounced in many long-lived, sessile than juveniles.
    [Show full text]
  • Reproductive Characteristics of Two Triturus Species (Amphibia: Caudata)
    Arch Biol Sci. 2020;72(3):321-328 https://doi.org/10.2298/ABS200328026V Reproductive characteristics of two Triturus species (Amphibia: Caudata) Tijana Vučić1,2,*, Ana Ivanović1, Sonja Nikolić1, Jovana Jovanović1 and Milena Cvijanović2 1Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia 2Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”- National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia *Corresponding author: [email protected] Received: March 28, 2020; Revised: June 10, 2020; Accepted: June 11, 2020; Published online: June 17, 2020 Abstract: During three consecutive years, we compared the reproductive characteristics and oviposition dynamics of two crested newt species, Triturus ivanbureschi and T. macedonicus. These two well-defined species are of special interest because of complex interactions at their contact zone, which include hybridization, species replacement and asymmetric mitochondrial DNA introgression. In common garden experiments, females were introduced to conspecific males, to males of other species and to hybrid males. We monitored the total number and size of the deposited eggs, as well as the dynamics and duration of oviposition during three consecutive years. The number of deposited eggs of Triturus species was much higher than previously reported. Triturus macedonicus lay more eggs that were of larger size in comparison to T. ivanbureschi. Also, the onset of T. macedonicus oviposition was considerably delayed compared to T. ivanbureschi. These are fundamental data, important for understanding complex species interactions in their contact zones. Keywords: life history traits; hybrid zone; Salamandridae; Triturus INTRODUCTION the maximum number of eggs that can be laid in a given season, but some eggs might not be deposited Triturus newts, a monophyletic group of nine species [3,14,15].
    [Show full text]
  • Hybridization & Conservation Natural Hybridization Can Create Genetic
    Hybridization & Conservation Natural hybridization can create genetic diversity, e.g. plant species of hybrid origin, genetic exchange among micro-organisms. But genetic hybridization due to human disturbances (particularly introduced species, but also habitat fragmentation modification) can compromise the genetic integrity of existing species to the point of causing extinctions. New Zealand grey duck (Anas superciliosa) hybridizes with introduced mallards (Anas platyrynchos). · Mallards are common but NZ greys are rare. · So NZG tend to mate with mallards, simply b/c more readily available. · So pure NZG are disappearing rapidly. · The same pattern is true for mallards hybridizing with and genetically swamping endemic Hawaiian ducks (A wyvilliana) and Australian black ducks (A rogersi). Northern spotted owls (Strix occidentalis caurina) declined to low numbers by loss of old growth forest. NSO now rare and logged habitat is being colonized by barred owl (Strix varia), which produces fertile hybrids with NSO. If BO become more common than NSO, genetic swamping is a risk. Example shows how habitat modification can create hybridization problems. Ethiopian wolf (Canis simensis) and domestic dog (C. familiaris). C. simensis has become rare (< 500 individuals) as afro-alpine habitat has become fragmented. C. simensis is similar to both wolf and coyote, origin not resolved (trichotomy in tree), consequently also similar to domestic dog. (Ohead: Gotelli et al. 1994, Figs, 1,2 [& table 2], Domestic dogs much more common. Matings of male dogs and female Ethiopian wolves observed. Microsatellites show genetic introgression. (Ohead: Gotelli et al. 1994, Figs 4,5) Domestic cat (Felis catus) swamping European wild cat (F sylvestris) and African wild cat (F Libyca).
    [Show full text]
  • A Genomic Footprint of Hybrid Zone Movement in Crested Newts
    LETTER doi:10.1002/evl3.9 A genomic footprint of hybrid zone movement in crested newts Ben Wielstra,1,2,3,4 Terry Burke,1 Roger K. Butlin,1,5 Aziz Avcı,6 Nazan Uz¨ um,¨ 6 Emin Bozkurt,6 Kurtulus¸ Olgun,6 and Jan W. Arntzen2 1Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom 2Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095 4E-mail: b.wielstra@sheffield.ac.uk 5Department of Marine Sciences, University of Gothenburg, S 405 30 Gothenburg, Sweden 6Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey Received December 16, 2016 Accepted April 4, 2017 Speciation typically involves a stage in which species can still exchange genetic material. Interspecific gene flow is facilitated by the hybrid zones that such species establish upon secondary contact. If one member of a hybridizing species pair displaces the other, their hybrid zone would move across the landscape. Although theory predicts that moving hybrid zones quickly stagnate, hybrid zones tracked over one or a few decades do not always follow such a limitation. This suggests that hybrid zones have the potential to traverse considerable distances over extended periods of time. When hybrid zones move, introgression is predicted to result in biased gene flow of selectively neutral alleles, from the receding species into the advancing species. We test for such a genomic footprint of hybrid zone movement in a pair of crested newt species (genus Triturus) for which we have a priori support for westward hybrid zone movement.
    [Show full text]
  • WCM 2001 Abstract Volume
    Abstracts Council of UNITAS MALACOLOGICA 1998-2001 World Congress of President: Luitfried SALVINI-PLAWEN (Wien/Vienna, Austria) Malacology Secretary: Peter B. MORDAN (London, England, UK) Treasurer: Jackie VAN GOETHEM (Bruxelles/Brussels, Belgium) 2001 Members of Council: Takahiro ASAMI (Matsumoto, Japan) Klaus BANDEL (Hamburg, Germany) Yuri KANTOR (Moskwa/Moscow, Russia) Pablo Enrique PENCHASZADEH (Buenos Aires, Argentinia) John D. TAYLOR (London, England, UK) Vienna, Austria Retired President: Rüdiger BIELER (Chicago, USA) 19. – 25. August Edited by Luitfried Salvini-Plawen, Janice Voltzow, Helmut Sattmann and Gerhard Steiner Published by UNITAS MALACOLOGICA, Vienna 2001 I II Organisation of Congress Symposia held at the WCM 2001 Organisers-in-chief: Gerhard STEINER (Universität Wien) Ancient Lakes: Laboratories and Archives of Molluscan Evolution Luitfried SALVINI-PLAWEN (Universität Wien) Organised by Frank WESSELINGH (Leiden, The Netherlands) and Christiane TODT (Universität Wien) Ellinor MICHEL (Amsterdam, The Netherlands) (sponsored by UM). Helmut SATTMANN (Naturhistorisches Museum Wien) Molluscan Chemosymbiosis Organised by Penelope BARNES (Balboa, Panama), Carole HICKMAN Organising Committee (Berkeley, USA) and Martin ZUSCHIN (Wien/Vienna, Austria) Lisa ANGER Anita MORTH (sponsored by UM). Claudia BAUER Rainer MÜLLAN Mathias BRUCKNER Alice OTT Thomas BÜCHINGER Andreas PILAT Hermann DREYER Barbara PIRINGER Evo-Devo in Mollusca Karl EDLINGER (NHM Wien) Heidemarie POLLAK Organised by Gerhard HASZPRUNAR (München/Munich, Germany) Pia Andrea EGGER Eva-Maria PRIBIL-HAMBERGER and Wim J.A.G. DICTUS (Utrecht, The Netherlands) (sponsored by Roman EISENHUT (NHM Wien) AMS). Christine EXNER Emanuel REDL Angelika GRÜNDLER Alexander REISCHÜTZ AMMER CHAEFER Mag. Sabine H Kurt S Claudia HANDL Denise SCHNEIDER Matthias HARZHAUSER (NHM Wien) Elisabeth SINGER Molluscan Conservation & Biodiversity Franz HOCHSTÖGER Mariti STEINER Organised by Ian KILLEEN (Felixtowe, UK) and Mary SEDDON Christoph HÖRWEG Michael URBANEK (Cardiff, UK) (sponsored by UM).
    [Show full text]
  • Globin Gene Cluster of European Rabbit (Oryctolagus Cuniculus)
    Heredity (2012) 108, 531–536 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy ORIGINAL ARTICLE Copy number polymorphism in the a-globin gene cluster of European rabbit (Oryctolagus cuniculus) R Campos1,2, JF Storz3 and N Ferrand1,2 Comparative genomic studies have revealed that mammals typically possess two or more tandemly duplicated copies of the a-globin (HBA) gene. The domestic rabbit represents an exception to this general rule, as this species was found to possess a single HBA gene. Previous electrophoretic surveys of HBA polymorphism in natural populations of the European rabbit (Oryctolagus cuniculus) revealed extensive geographic variation in the frequencies of three main electromorphs. The variation in frequency of two electromorphs is mainly partitioned between two distinct subspecies of European rabbit, and a third is restricted to the hybrid zone between the two rabbit subspecies in Iberia. Here we report the results of a survey of nucleotide polymorphism, which revealed HBA copy number polymorphism in Iberian populations of the European rabbit. By characterizing patterns of HBA polymorphism in populations from the native range of the European rabbit, we were able to identify the specific amino-acid substitutions that distinguish the previously characterized electromorphs. Within the hybrid zone, we observed the existence of a second HBA gene duplicate, named HBA2, that mostly represents a novel sequence haplotype, which occurs in higher frequency within the hybrid zone, and thus appears to have arisen in hybrids of the two distinct subspecies. Although this novel gene is also present in other wild Iberian populations, it is almost absent from French populations, which suggest a recent ancestry, associated with the establishment of the post-Pleistocene contact zone between the two European rabbit subspecies.
    [Show full text]
  • A Multimarker Phylogeography of Crested Newts (Triturus Cristatus Superspecies) Reveals Cryptic Species ⇑ B
    Molecular Phylogenetics and Evolution 67 (2013) 167–175 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multimarker phylogeography of crested newts (Triturus cristatus superspecies) reveals cryptic species ⇑ B. Wielstra a,b, , A.B. Baird c, J.W. Arntzen a a Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands b University of Twente, Faculty of Geo-Information Science and Earth Observation – ITC, P.O. Box 6, 7500 AA, Enschede, The Netherlands c University of Houston – Downtown, 1 Main Street, Houston, TX 77002, USA article info abstract Article history: The crested newt Triturus cristatus superspecies is composed of five recognized species. One of these, T. Received 27 August 2012 karelinii sensu lato, comprises three geographically structured mitochondrial DNA lineages: ‘eastern’, Revised 9 January 2013 ‘central’ and ‘western T. karelinii’. Genetic divergence among these lineages is comparable to that of rec- Accepted 10 January 2013 ognized crested newt species, but morphologically they are indistinguishable. Here, we conduct a multi- Available online 23 January 2013 marker phylogeographical survey to explore the evolutionary independence of these mitochondrial DNA lineages and we include representatives of the other species to guide our interpretation of the results. All Keywords: markers show distinct patterns when analyzed singly (as a phylogeny or haplotype network) and none of Historical biogeography them sort haplotypes fully in line with species or mitochondrial DNA lineage. A multilocus approach Introgression Mitochondrial DNA (BAPS and ÃBEAST) on the other hand shows that not only the recognized species, but also the three mito- Nuclear DNA chondrial DNA lineages represent discrete nuclear DNA gene pools.
    [Show full text]
  • Study of the Marbled Newt (Triturus (M.) Marmoratus and T
    Faculdade de Ciências da Universidade do Porto Tese de Mestrado em Ecologia Aplicada Study of the Marbled Newt (Triturus (m.) marmoratus and T. (m.) pygmaeus) hybrid zone by genetic markers V CI io 2004 Gonçalo Espregueira Cruz Themudo Acknowledgements I would like to thank Pirn Arntzen for his supervision, advices and availability to discuss the results even at long distance. I would also like to thank Prof. Doutor Nuno Ferrand for welcoming me into his group with enthusiasm. I am grateful to Armando Geraldes, Catarina Pinho e Paula Campos for teaching me lab techniques in starch gel electrophoresis, isoelectric focusing and DNA sequencing, respectively. The work by Armando Geraldes and Elsa Froufe was crucial for choosing some of the markers used. The comments by Pedro Esteves on an early draft of this thesis significantly improved its contents. This work couldn't have happened without some people that helped in fieldwork, not only by helping me collect samples but also by making it feel not just work. These people are Zé Miguel Oliveira, Nuno Curado, Cláudia Soares, Armando Loureiro, among other people. Annie and Harm were always very kind in providing accommodation in Nisa for many of the fieldtrips. Labwork would not have been so interesting and fun if Bárbara, Vasco, Catarina, Xana, Armando, Paula, Zef, Miguel (Teixas), Sara, Ricardo, Sequeira, Helena, Teixeira (Tex), Cardia and Rui were not there to brake the routine. ICN (Instituto de Conservação da Natureza) provided permits to collect all the samples. Special thanks are due to Parques de Sintra, Monte da Lua, and specifically to Ana Margarida Martins and Rita Torres Alves, for a special permit to collect in the park.
    [Show full text]