Efficiently Computing All Delaunay Triangles Occurring over All Contiguous Subsequences Stefan Funke Universität Stuttgart, Germany
[email protected] Felix Weitbrecht Universität Stuttgart, Germany
[email protected] Abstract Given an ordered sequence of points P = {p1, p2, . , pn}, we are interested in computing T , the set of distinct triangles occurring over all Delaunay triangulations of contiguous subsequences within P . We present a deterministic algorithm for this purpose with near-optimal time complexity O(|T | log n). Additionally, we prove that for an arbitrary point set in random order, the expected number of Delaunay triangles occurring over all contiguous subsequences is Θ(n log n). 2012 ACM Subject Classification Theory of computation → Computational geometry Keywords and phrases Computational Geometry, Delaunay Triangulation, Randomized Analysis Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.28 1 Introduction For an ordered sequence of points P = {p1, p2, . , pn}, we consider for 1 ≤ i < j ≤ n the contiguous subsequences Pi,j := {pi, pi+1, . , pj} and their Delaunay triangulations S Ti,j := DT (Pi,j). We are interested in the set T := i<j{t | t ∈ Ti,j} of distinct Delaunay triangles occurring over all contiguous subsequences. Figure 1 shows a sequence of points 2 n p1, . , pn where |T | = Ω(n ) (collinearities could be perturbed away). For j > 2 , any point p will be connected to all points {p , . , p n } in T , so any such T contains Θ(n) j 1 2 1,j 1,j 0 2 Delaunay triangles not contained in any T1,j0 with j < j, hence |T | = Ω(n ).