Shape of Shortest Paths in Random Spatial Networks Alexander Kartun-Giles, Marc Barthelemy, Carl Dettmann
Shape of shortest paths in random spatial networks Alexander Kartun-Giles, Marc Barthelemy, Carl Dettmann To cite this version: Alexander Kartun-Giles, Marc Barthelemy, Carl Dettmann. Shape of shortest paths in random spatial networks. Physical Review E , American Physical Society (APS), 2019, 100 (3), pp.2315. 10.1103/PhysRevE.100.032315. cea-02564008 HAL Id: cea-02564008 https://hal-cea.archives-ouvertes.fr/cea-02564008 Submitted on 2 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The shape of shortest paths in random spatial networks Alexander P. Kartun-Giles,1 Marc Barthelemy,2 and Carl P. Dettmann3 1Max Plank Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany 2Institut de Physique Th´eorique,CEA, CNRS-URA 2306, Gif-sur-Yvette, France 3School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK In the classic model of first passage percolation, for pairs of vertices separated by a Euclidean distance L, geodesics exhibit deviations from their mean length L that are of order Lχ, while the transversal fluctuations, known as wandering, grow as Lξ. We find that when weighting edges directly with their Euclidean span in various spatial network models, we have two distinct classes defined by different exponents ξ = 3=5 and χ = 1=5, or ξ = 7=10 and χ = 2=5, depending only on coarse details of the specific connectivity laws used.
[Show full text]