A Semi-Automated Video Annotation Tool for Gastroenterologists

Total Page:16

File Type:pdf, Size:1020Kb

A Semi-Automated Video Annotation Tool for Gastroenterologists Fast Machine Learning Annotation in the Medical Domain: A Semi-Automated Video Annotation Tool for Gastroenterologists Adrian Krenzer ( [email protected] ) Julius-Maximilians-Universitat Wurzburg https://orcid.org/0000-0002-1593-3300 Kevin Makowski University of Würzburg: Julius-Maximilians-Universitat Wurzburg Amar Hekalo University of Würzburg: Julius-Maximilians-Universitat Wurzburg Daniel Fitting Universitätsklinikum Würzburg: Universitatsklinikum Wurzburg Joel Troya University Hospital Wurzburg: Universitatsklinikum Wurzburg Wolfram G. Zoller City of Stuttgart Hospitals Katharinenhospital: Klinikum Stuttgart Katharinenhospital Alexander Hann Universitätsklinikum Würzburg: Universitatsklinikum Wurzburg Frank Puppe Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Research Keywords: Machine learning, Deep learning, Annotation, Endoscopy, Gastroenterology, Automation, Object detection Posted Date: August 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-776478/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Krenzer et al. 2 3 4 5 6 RESEARCH 7 8 9 Fast machine learning annotation in the medical 10 11 12 domain: A semi-automated video annotation tool 13 14 for gastroenterologists 15 16 Adrian Krenzer1*, Kevin Makowski1, Amar Hekalo1, Daniel Fitting2, Joel Troya2, Wolfram G. Zoller3, 17 Alexander Hann2 and Frank Puppe1 18 19 *Correspondence: 20 [email protected] Abstract 21 1Department of Artificial 22 Intelligence and Knowledge Background: Machine learning, especially deep learning, is becoming more and Systems, Sanderring 2, 97070 more relevant in research and development in the medical domain. For all of the 23 W¨urzburg, Germany 24 Full list of author information is supervised deep learning applications, data is the most critical factor in securing 25 available at the end of the article successful implementation and sustaining the progress of the machine learning 26 model. Especially gastroenterological data, which often involves endoscopic 27 videos, are cumbersome to annotate. Domain experts are needed to interpret and 28 annotate the videos. To support those domain experts, we generated a 29 framework. With this framework, instead of annotating every frame in the video 30 sequence, experts are just performing key annotations at the beginning and the 31 end of sequences with pathologies, e.g. visible polyps. Subsequently, non-expert 32 annotators supported by machine learning add the missing annotations for the 33 frames in-between. 34 Results: Using this framework we were able to reduce work load of domain 35 36 experts on average by a factor of 20. This is primarily due to the structure of the 37 framework, which is designed to minimize the workload of the domain expert. 38 Pairing this framework with a state-of-the-art semi-automated pre-annotation 39 model enhances the annotation speed further. Through a study with 10 40 participants we show that semi-automated annotation using our tool doubles the 41 annotation speed of non-expert annotators compared to a well-known 42 state-of-the-art annotation tool. 43 Conclusion: In summary, we introduce a framework for fast expert annotation 44 for gastroenterologists, which reduces the workload of the domain expert 45 considerably while maintaining a very high annotation quality. The framework 46 incorporates a semi-automated annotation system utilizing trained object 47 detection models. The software and framework are open-source. 48 49 Keywords: Machine learning; Deep learning; Annotation; Endoscopy; 50 Gastroenterology; Automation; Object detection 51 52 53 54 Background 55 56 Machine learning especially deep learning is becoming more and more relevant in 57 research and development in the medical domain [1, 2]. For all of the supervised 58 deep learning applications, data is the most critical factor in securing successful 59 implementation and sustaining progress. Numerous studies have shown that access 60 61 to data and data quality are crucial to enable successful machine learning of med- 62 ical diagnosis, providing real assistance to physicians [3, 4, 5, 6, 7]. Exceptionally 63 64 65 1 Krenzer et al. Page 2 of 22 2 3 4 5 6 high-quality annotated data can improve deep learning detection results to great 7 extent [8, 9, 10]. E.g., Webb et al. show that higher data quality improves detection 8 results more than using larger amounts of lower quality data [11]. This is especially 9 important to keep in mind while operating in the medical domain, as mistakes may 10 11 have fatal consequences. Nevertheless, acquiring such data is very costly particu- 12 larly if domain experts are involved. On the one hand domain, experts have minimal 13 time resources for data annotation, while on the other hand, data annotation is a 14 highly time-consuming process. The best way to tackle this problem is by reducing 15 16 the annotation time spend by the actual domain expert as much as possible while 17 using non-experts to finish the process. Therefore, in this paper, we designed a 18 framework that utilizes a two-step process involving a small expert annotation part 19 and a large non-expert annotation part. This shifts most of the workload from the 20 21 expert to a non-expert while still maintaining proficient high-quality data. Both of 22 the tasks are combined with AI to enhance the annotation process efficiency further. 23 To handle the entirety of this annotation process, we introduce the software Fast 24 Colonoscopy Annotation Tool (FastCat). This tool assists in the annotation process 25 26 in endoscopic videos but can easily be extended to any other medical domain. The 27 main contributions of our paper are: 28 29 1) We introduce a framework for fast expert annotation, which reduces the workload 30 31 of the domain expert by a factor of 20 while maintaining very high annotation 32 quality. 33 2) We publish an open-source software for annotation in the gastroenterological 34 domain and beyond, including two views, one for expert annotation and one 35 [1] 36 for non-expert annotation. 37 3) We incorporate a semi-automated annotation process in the software, which 38 reduces the annotation time of the annotators and further enhances the an- 39 notation process’s quality. 40 41 42 To overview existing work and properly allocate our paper in the literature we 43 describe a brief history reaching from general annotation tools for images and videos 44 to annotation specialized for medical use. 45 46 47 A brief history of annotation tools 48 As early as the 1990s, the first methods were conceived to collect large datasets 49 of labeled images [12]. E.g., ”The Open Mind Initiative”, a web-based framework, 50 was developed in 1999. Its goal was to collect annotated data by web users to 51 52 be utilized by intelligent algorithms [13]. Over the years, various ways to obtain 53 annotated data have been developed. E.g., an online game called ESP was developed 54 to generate labeled images. Here, two random online players are given the same 55 image and, without communication, must guess the thoughts of the other player 56 57 about the image and provide a common term for the target image as quickly as 58 possible [14, 12]. As a result, several million images have been collected. The first 59 and foremost classic annotation tool called labelme was developed in 2007 and is 60 still one of the most popular open-source online annotation tools to create datasets 61 62 [1]https://github.com/fastcatai/fastcat 63 64 65 1 Krenzer et al. Page 3 of 22 2 3 4 5 Table 1 Comparison between video and image annotation tools. 6 Tool CVAT LabelImg labelme VoTT VIA 7 Image • • • •• 8 Video - - • • • 9 Usability Easy Easy Medium Medium Hard 10 VOC - • • • • 11 COCO - - • • • 12 YOLO - - - • • 13 Formats TFRecord - - - • • 14 Others - - • • • 15 16 17 for computer vision. Labelme provides the ability to label objects in an image 18 by specific shapes, as well as other features [15]. From 2012 to today, with the 19 rise of deep learning in computer vision, the number of annotation tools expanded 20 21 rapidly. One of the most known and contributing annotation tools is LabelImg, 22 published in 2015. LabelImg is an image annotation tool based on Python which 23 utilizes bounding boxes to annotate images. The annotations are stored in XML 24 files that are saved in either PASCAL VOC or YOLO format. Additionally, in 2015 25 26 Playment was introduced. Playment is an annotation platform to create training 27 datasets for computer vision. It offers labeling for images and videos using different 28 2D or 3D boxes, polygons, points, or semantic segmentation. Besides, automatic 29 labeling is provided for support. In 2017 Rectlabel entered the field. RectLabel is a 30 paid labeling tool that is only available on macOS. It allows the usual annotation 31 32 options like bounding boxes as well as automatic labeling of images. It also supports 33 the PASCAL VOC XML format and exports the annotations to different formats 34 (e.g., YOLO or COCO JSON). Next, Labelbox, a commercial training data platform 35 for machine learning, was introduced. Among other things, it offers an annotation 36 37 tool for images, videos, texts, or audios and data management of the labeled data. 38 Nowadays, a variety of image and video annotation tools can be found. Some have 39 basic functionalities, and others are designed for particular tasks. We picked five 40 freely available state-of-the-art annotation tools and compared them more in-depth. 41 In table 1, we shortly describe these tools and compare them. 42 43 44 Computer Vision Annotation Tool (CVAT) CVAT [16] was developed by Intel and 45 is a free and open-source annotation tool for images and videos. It is based on a 46 client-server model, where images and videos are organized as tasks and can be split 47 up between users to enable a collaborative working process.
Recommended publications
  • Music Instrument Localization in Virtual Reality Environments Using Audio-Visual Cues
    Music Instrument Localization in Virtual Reality Environments using audio-visual cues Siddhartha Bhattacharyya B.Tech A Dissertation Presented to the University of Dublin, Trinity College in partial fulfilment of the requirements for the degree of Master of Science in Computer Science (Data Science) Supervisor: Aljosa Smolic and Cagri Ozcinar September 2020 Declaration I, the undersigned, declare that this work has not previously been submitted as an exercise for a degree at this, or any other University, and that unless otherwise stated, is my own work. Siddhartha Bhattacharyya September 6, 2020 Permission to Lend and/or Copy I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request. Siddhartha Bhattacharyya September 6, 2020 Acknowledgments I would like to thank my supervisors Professors Aljosa Smolic and Cagri Ozcinar for their dedicated support, understanding and leadership. My heartfelt gratitude goes out to my peers and the batch of 2019-2020 for their support and friendship. I would also like to thank the Trinity VR community for their help. I would like to extend my sincerest gratitude to the admins at SCSS labs who gave endless support in ensuring the availability of remote servers. During this time of crisis and remote work, this dissertation would not have been possible without their support. Last but not the least, I would like to thank my family for their trust and belief in me. Siddhartha Bhattacharyya University of Dublin, Trinity College September 2020 iii Music Instrument Localization in Virtual Reality Environments using audio-visual cues Siddhartha Bhattacharyya, Master of Science in Computer Science University of Dublin, Trinity College, 2020 Supervisor: Aljosa Smolic and Cagri Ozcinar This research work aims to develop and assess the capabilities of convolution neu- ral networks to identify and localize musical instruments in 360 videos.
    [Show full text]
  • Abschlussarbeit Im Fachbereich Elektrotechnik & Informatik an Der
    Bachelorthesis Adriana Bostandzhieva Design and Implementation of System for Managing Training Data for Artificial Intelligence Algorithms Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informations- und Department of Information and Elektrotechnik Electrical Engineering Adriana Bostandzhieva Design and Implementation of System for Managing Training Data for Artificial Intelligence Algorithms Bachelorthesisbased on the study regulations for the Bachelor of Engineering degree programme Information Engineering at the Department of Information and Electrical Engineering of the Faculty of Engineering and Computer Science of the Hamburg University of Aplied Sciences Supervising examiner : Prof. Dr. -Ing. Lutz Leutelt Second Examiner : Prof. Dr. Klaus Jünemann Day of delivery 3. Juli 2019 Adriana Bostandzhieva Title of the Bachelorthesis Design and Implementation of System for Managing Training Data for Artificial Intelli- gence Algorithms Keywords AI, training data, database, labels, video Abstract This paper is part of a pilot project of the Hamburg University of Applied Sciences. The project aims to utilise object detection algorithms and visual data to analyse complex road scenes. The aim of this thesis is to determine the best tool to use to label data for training artificial intelligence algorithms, to specify what data should be saved and to determine what database is to be used to save the data. The validity of the findings is proved by building a small prototype to showcase integration between the labelling tool and the database. Adriana Bostandzhieva Titel der Arbeit Entwicklung und Aufbau eines System zur Verwaltung von Trainingsdaten für Algo- rithmen der künstlichen Intelligenz Stichworte Trainingsdaten, Datenbanke, Video, KI Kurzzusammenfassung Diese Arbeit ist Teil eines Pilotprojekts der Hochschule für Angewandte Wissenschaf- ten Hamburg.
    [Show full text]
  • A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours
    A 3D interactive multi-object segmentation tool using local robust statistics driven active contours The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gao, Yi, Ron Kikinis, Sylvain Bouix, Martha Shenton, and Allen Tannenbaum. 2012. A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours. Medical Image Analysis 16, no. 6: 1216–1227. doi:10.1016/j.media.2012.06.002. Published Version doi:10.1016/j.media.2012.06.002 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28548930 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2013 August 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Med Image Anal. 2012 August ; 16(6): 1216–1227. doi:10.1016/j.media.2012.06.002. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours Yi Gaoa,*, Ron Kikinisb, Sylvain Bouixa, Martha Shentona, and Allen Tannenbaumc aPsychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 bSurgical Planning Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 cDepartments of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02115 Abstract Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community.
    [Show full text]
  • Evaluating Usage of Images for App Classification
    Evaluating Usage of Images for App Classification Kushal Singla, Niloy Mukherjee, Hari Manassery Koduvely, Joy Bose Samsung R&D Institute Bangalore, India [email protected] Abstract— App classification is useful in a number of In this paper, we seek to evaluate different methods in applications such as adding apps to an app store or building a which app images can be used to improve the accuracy of the user model based on the installed apps. Presently there are a app classification. One such method involves extracting text number of existing methods to classify apps based on a given from the app images using optical character recognition taxonomy on the basis of their text metadata. However, text (OCR) and using the extracted text to classify the app. based methods for app classification may not work in all cases, Another method involves generating text descriptions of the such as when the text descriptions are in a different language, app images by summarizing the images using a tool, and or missing, or inadequate to classify the app. One solution in using the resulting text descriptions for the app classification. such cases is to utilize the app images to supplement the text Yet another method involves identifying the objects in the description. In this paper, we evaluate a number of approaches in which app images can be used to classify the apps. In one app images and using the identified objects to classify the approach, we use Optical character recognition (OCR) to app. An ensemble of such different models can also be used, extract text from images, which is then used to supplement the perhaps along with text based classification of apps.
    [Show full text]
  • Open Source Computer Vision-Based Layer-Wise 3D Printing Analysis
    Open Source Computer Vision-based Layer-wise 3D Printing Analysis Aliaksei L. Petsiuk1 and Joshua M. Pearce1,2,3 1Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 2Department of Material Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA 3Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, FI-00076, Finland [email protected], [email protected] Graphical Abstract Highlights • Developed a visual servoing platform using a monocular multistage image segmentation • Presented algorithm prevents critical failures during additive manufacturing • The developed system allows tracking printing errors on the interior and exterior Abstract The paper describes an open source computer vision-based hardware structure and software algorithm, which analyzes layer-wise the 3-D printing processes, tracks printing errors, and generates appropriate printer actions to improve reliability. This approach is built upon multiple- stage monocular image examination, which allows monitoring both the external shape of the printed object and internal structure of its layers. Starting with the side-view height validation, the developed program analyzes the virtual top view for outer shell contour correspondence using the multi-template matching and iterative closest point algorithms, as well as inner layer texture quality clustering the spatial-frequency filter responses with Gaussian mixture models and segmenting structural anomalies with the agglomerative hierarchical clustering algorithm. This allows evaluation of both global and local parameters of the printing modes. The experimentally- verified analysis time per layer is less than one minute, which can be considered a quasi-real-time process for large prints. The systems can work as an intelligent printing suspension tool designed to save time and material.
    [Show full text]
  • Rahway Leagues
    Rahway Public Library 1175 13* - George Avev. PAGE 20 THURSDAY, JUNE 8, 1972 RAHWAY NEWS-RECORD/CLARK PATRIOT Rahway, N, J. 07065 r— • I asa Bpl BBfl £EB9 BB ItfST^ffl 6ffXl> Academy Honors I •Z-M Michael James Angelo of 4 p.m. at the Roselle school. tics and science. Robert Clark Ward and Rahway will be the valedic- Mr. Simon will be grad- The rwo honor students James Dennis Zupkus. Senator Case £ are among the 12 Railway THIS WEEK torian and John Philip Simon uated with highest honors in Clark students are Ray- residents and five Clark re- -Oj£-Clark the salutatorian at history and French and sec- mond Edward Hirsche, Tho- Since Commissioner T. a letter giving a . United Statee Senator * sidents who are candidates tte commencement ex- ond highest honors In English. mas Edward Juzefyk, Rob- Ritter was the only member tentative encroachmentllne," Clifford P. Case of Rahway *fi for graduation. Mr. Baker said. "We're in 2 excises of RoseUe Catholic Mr. Angelo will receive the ert Michael Olearczyk, John present out of the 10-member has been given the Citizen's 0 NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST. 1822 High School on Saturday at highest honors In mathema- Rah way aru dents are Ri- Philip Simon and Joseph panel of the New Jersey the process of getting signa- tures from homeowners Award of the Academy of fl chard Joseph Adinolfi, Mi- Benedict Sutter. State Water Policy Council, Medicine of New Jersey for |i chael James Angelo, Ray- participants agreed to a post- along this stream to give the 388-3388 city rights to dig-up land up his support of health legisla- 2 mong Edward Duffy, Gary- ponement of the special hear- tion in Congress.
    [Show full text]
  • City of Lake Stevens Vision Statement by 2030, We Are a Sustainable
    City Council Meeting November 24, 2020 Page 1 of 126 City of Lake Stevens Vision Statement By 2030, we are a sustainable community around the lake with a vibrant economy, unsurpassed infrastructure and exceptional quality of life. CITY COUNCIL REGULAR MEETING AGENDA REMOTE ACCESS ONLY – VIA ZOOM Tuesday, November 24, 2020 – 7:00 p.m. Join Zoom Meeting: https://us02web.zoom.us/j/87181345762 or call in at 253-215-8782, Meeting ID: 871 8134 5762 CALL TO ORDER Mayor PLEDGE OF ALLEGIANCE Mayor ROLL CALL City Clerk APPROVAL OF AGENDA Council President CITIZEN COMMENTS Mayor GUEST BUSINESS Introduction of new Stormwater Coordinator Eric Shannon Farrant COUNCIL BUSINESS Council President MAYOR’S BUSINESS Mayor CITY DEPARTMENT REPORT Update Gene CONSENT AGENDA A Vouchers Barb B City Council Regular Meeting Minutes of Kelly November 10, 2020 C City Council Workshop Meeting Minutes of Kelly November 17, 2020 D Ordinance 1104 Amending Lake Stevens Kelly Municipal Code Concerning the Start Time for Regularly Scheduled City Council Meetings E Revised Resolution 2020-19 Machias Russ Industrial Annexation City Council Meeting November 24, 2020 Page 2 of 126 Lake Stevens City Council Regular Meeting Agenda November 24, 2020 PUBLIC HEARING F Ordinance 1103 Multifamily Housing Tax Sabrina Exemption Program Regulations G Ordinance 1101 – 2021 Budget Barb/Josh ACTION ITEMS: H Professional Services Agreement with Shannon/ Davido Consulting Group, Inc Aaron ADJOURN THE PUBLIC IS INVITED TO ATTEND Special Needs The City of Lake Stevens strives to provide accessible opportunities for individuals with disabilities. Please contact Human Resources, City of Lake Stevens ADA Coordinator, (425) 622-9400, at least five business days prior to any City meeting or event if any accommodations are needed.
    [Show full text]
  • GPU 学習時間 精度(Map) 1 GPU (NC6) 7分22秒 0.9479 2 GPU (NC12) 3分43秒 0.9479 本番稼働に向けて Confusion Matrix for Karugamo
    CNTK deep dive - DeepLearning関連 PJ の進め方から本番展開まで AI07 Agenda Profile 岩崎 喬一(Kyoichi Iwasaki) Today’s data データサイエンティスト、やっぱり要る? データサイエンティストのスキルセット 課題背景を理解 →ビジネス課題を整理 ビジネス力 解決 情報処理、人工知能、 統計学などの知恵を理 解し、適用 データサイエ データエンジ データサイエンスを意味 ある形に使えるようにし、 ンス力 ニアリング力 実装、運用 Ref. データサイエンティスト協会:http://www.datascientist.or.jp/news/2014/pdf/1210.pdf データ分析プロジェクトの進め方 ビジネス 要件定義 ビジネス力 データ収 展開 集・確認 データサイエ データエンジ ンス力 ニアリング力 データ分 評価 析 機械学習と深層学習 深層学習? 深層学習による主な画像解析(as of May2018) What are specified? Algorithms MSでの実装 単純 画像分類 What? CNN Custom Vision, CNTK Fast(er) Where? Custom Vision, CNTK 物体検知 What? R-CNN Mask Where? Shape? ..(In near future?) セグメンテーション What? 複雑 R-CNN 深層学習による主な画像解析 深層学習による主な画像解析(as of May2018) 2015 2015-16 2015-16 2015-16 2017 • Fast R-CNN • Faster R-CNN • YOLO • SSD • Mask R-CNN 物体検知 セグメンテーション 深層学習の「学習」? 深層学習(機械学習の観点から) CNTKとは? CNTKとは? ▪ GPU / マルチGPU(1-bit SGD) https://www.microsoft.com/en-us/cognitive-toolkit/ CNTKの実行速度 小さいほど高速 DL F/W FCN-S AlexNet ResNet-50 LSTM-64 CNTK 0.017 0.031 0.168 0.017 Caffe 0.017 0.027 0.254 -- TensorFlow 0.020 0.317 0.227 0.065 Torch 0.016 0.043 0.144 0.324 https://arxiv.org/pdf/1608.07249.pdf Codes in CNTK https://github.com/Microsoft/CNTK CNTKで2値分類をやってみる 赤 青 CNTKで2値分類をやってみる パラメータw、b w、b bias 푏 1 疾患 年齢 푤 11 z1 あり 푤21 푏2 푤12 疾患 腫瘍 푤 z2 22 なし CNTKの処理フロー 入力・出力変数の定義 ネットワークの定義 損失関数、最適化方法の定義 モデル学習 モデル評価 CNTKの処理フロー – 1/5 入力・出力変数の定義 import cntk as C ## 入力変数(年齢, 腫瘍の大きさ)の2種類あり input_dim = 2 ## 分類数(疾患の有無なので2値) num_output_classes = 2 ## 入力変数 feature = C.input_variable(input_dim, np.float32) ## 出力変数 label = C.input_variable(num_output_classes, np.float32) CNTKの処理フロー – 2/5 ネットワークの定義 def linear_layer(input_var, output_dim): input_dim = input_var.shape[0] ## Define weight W weight_param = C.parameter(shape=(input_dim, output_dim)) ## Define bias b bias_param = C.parameter(shape=(output_dim)) ## Wx + b.
    [Show full text]
  • Cross-Model Image Annotation Platform with Active Learning
    Cross-Model Image Annotation Platform with Active Learning Ng Hui Xian Lynnette1, Henry Ng Siong Hock1,2, and Nguwi Yok Yen2 1 Defence Science Technology Agency, Singapore, {nhuixia1, hngsiong}@dsta.gov.sg 2 National Technological University, Singapore, [email protected] Abstract. We have seen significant leapfrog advancement in machine learning in recent decades. The central idea of machine learnability lies on constructing learning algorithms that learn from good data. The avail‐ ability of more data being made publicly available also accelerates the growth of AI in recent years. In the domain of computer vision, the quality of image data arises from the accuracy of image annotation. Labelling large volume of image data is a daunting and tedious task. This work presents an End‐to‐End pipeline tool for object annotation and recognition aims at enabling quick image labelling. We have developed a modular image annotation platform which seamlessly incorporates assisted image annotation (annotation assistance), active learning and model training and evaluation. Our approach provides a number of advantages over current image annotation tools. Firstly, the annotation assistance utilizes reference hierarchy and reference images to locate the objects in the images, thus reducing the need for annotating the whole object. Secondly, images can be annotated using polygon points allowing for objects of any shape to be annotated. Thirdly, it is also interoperable across several image models, and the tool provides an interface for object model training and evaluation across a series of pre‐ trained models. We have tested the model and embeds several benchmarking deep learning models. The highest accuracy achieved is 74%.
    [Show full text]
  • About This Document Opencv and Matlab Mex Files Recommended Knowledge General Concepts Mex Files
    1 About this document ABOUT THIS DOCUMENT This document was created as part of a final project for a BSc degree at the Academic College of Tel- Aviv Yaffo, by Rachely Esman and Yoad Snapir, under the supervision of Tal Hassner. As part of the project, we used Intel's OpenCV library, calling its functions from MATLAB. We found the subject tricky and thus decided to share the experience of our work with others describing the common pitfalls. You can use this document freely according to the copyrights noted below but under your sole responsibility. Rachely and Yoad. OPENCV AND MATLAB MEX FILES This guide will provide a quick walk through on compiling C++ OpenCV modules as MEX runtime files of MATLAB under: MS Visual Studio 2005 MATLAB 7.5.0 Windows 32bit And will probably be clear enough for other platforms / versions. RECOMMENDED KNOWLEDGE Good understanding of C++ Compilation and linkage concepts. DLL general usage Visual Studio 2005 environment Basic MATLAB and MEX files knowledge GENERAL CONCEPTS MEX FILES MEX files are actually simple .DLL files compiled with extension .MEXW32 using ordinary compilation tools provided with VS2005. Those .DLL files have a fixed entry point "mexFunction" with a fixed signature. (List of IN/OUT parameters) Follow this link to get an overview of MEX files and information on using them: http://www.mathworks.com/support/tech-notes/1600/1605.html#intro MEX files are compiled (and linked) from within the MATLAB environment using the following syntax: mex 'srcfile1.cpp' 'srcfile2.cpp' 'objfile1.obj' … Before compiling, you need to setup the compilation options using the command: Copyright © 2008 R.
    [Show full text]
  • Anastasia Tyurina [email protected]
    1 Anastasia Tyurina [email protected] Summary A specialist in applying or creating mathematical methods to solving problems of developing technologies. A rare expert in solving problems starting from the stage of a stated “word problem” to proof of concept and production software development. Such successful uses of an educational background in mathematics, intellectual courage, and tenacious character include: • developed a unique method of statistical analysis of spectral composition in 1D and 2D stochastic processes for quality control in ultra-precision mirror polishing • developed novel methods of detection, tracking and classification of small moving targets for aerial IR and EO sensors. Used SIFT, and SIRF features, and developed innovative feature-signatures of motion of interest. • developed image processing software for bioinformatics, point source (diffraction objects) detection semiconductor metrology, electron microscopy, failure analysis, diagnostics, system hardware support and pattern recognition • developed statistical software for surface metrology assessment, characterization and generation of statistically similar surfaces to assist development of new optical systems • documented, published and patented original results helping employers technical communications • supported sales with prototypes and presentations • worked well with people – colleagues, customers, researchers, scientists, engineers Tools MATLAB, Octave, OpenCV, ImageJ, Scion Image, Aphelion Image, Gimp, PhotoShop, C/C++, (Visual C environment), GNU development tools, UNIX (Solaris, SGI IRIX), Linux, Windows, MS DOS. Positions and Experience Second Star Algonumerixs – 2008-present, founder and CEO http://www.secondstaralgonumerix.com/ 1) Developed a method of statistical assessment, characterisation and generation of random surface metrology for sper precision X-ray mirror manufacturing in collaboration with Lawrence Berkeley National Laboratory of University of California Berkeley.
    [Show full text]
  • On the Hunt for Excited States
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 45 NUMBER 10 DECEMBER 2005 On the hunt for excited states HOMESTAKE DARK MATTER SNOWMASS Future assured for Galactic gamma rays US workshop gets underground lab p5 may hold the key p 17 ready for the ILC p24 www.vectorfields.comi Music to your ears 2D & 3D electromagnetic modellinj If you're aiming for design excellence, demanding models. As a result millions you'll be pleased to hear that OPERA, of elements can be solved in minutes, the industry standard for electromagnetic leaving you to focus on creating modelling, gives you the most powerful outstanding designs. Electron trajectories through a TEM tools for engineering and scientific focussing stack analysis. Fast, accurate model analysis • Actuators and sensors - including Designed for parameterisation and position and NDT customisation, OPERA is incredibly easy • Magnets - ppm accuracy using TOSCA to use and has an extensive toolset, making • Electron devices - space charge analysis it ideal for a wide range of applications. including emission models What's more, its high performance analysis • RF Cavities - eigen modes and single modules work at exceptional levels of speed, frequency response accuracy and stability, even with the most • Motors - dynamic analysis including motion Don't take our word for it - order your free trial and check out OPERA yourself. B-field in a PMDC motor Vector Fields Ltd Culham Science Centre, Abingdon, Oxon, 0X14 3ED, U.K. Tel: +44 (0)1865 370151 Fax: +44 (0)1865 370277 Email: [email protected] Vector Fields Inc 1700 North Famsworth Avenue, Aurora, IL, 60505.
    [Show full text]