<<

International Journal of Pure and Applied Mathematics Volume 118 No. 11 2018, 257-276 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v118i11.32 Special Issue ijpam.eu

On the controllability of non-densely defined fractional neutral differential equations in Banach spaces

R. Subashini∗, S.Vimal Kumar†, S. Saranya‡ and C. Ravichandran§

Abstract In this paper, we investigates the controllability results for non-densely defined fractional neutral functional differential equations in by using fractional calculus theory and standard fixed point theorem. And also we showed the applications of abstract results.

Keywords: Fractional differential equations; Neutral equations; Controllability; Fixed point theorem. 2010 Mathematics Subject Classification: 34A08

1 Introduction

In the recent years, the controllability plays an important role in the fractional calculus the- ory and has been extensively studied, the authors [3, 5, 13, 15, 20, 21, 25]. This is due to the fact that fractional differential equations have various applications in engineering and scientific disciplines, for example, fluid dynamics, fractal theory, diffusion in porous media, fractional biological neurons, traffic flow, polymer rheology, neural network modeling, viscoelastic panel in super sonic gas flow, real system characterized by power laws, electrodynamics of complex medium, sandwich system identification, nonlinear oscillation of earthquake, models of pop- ulation growth, mathematical modeling of the diffusion of discrete particles in a turbulent fluid, nuclear reactors and theory of population dynamics. The details on the theory and its applications may be found in [8, 10, 11, 12, 14, 18, 22, 23, 24, 27, 28, 30]. Non-densely defined functional differential systems in abstract space with control system studied many authors [4, 6, 7]. Neutral fractional differential equations arise in many areas of

∗Research and Development Center, Bharathiar University, Coimbatore - 641046, Tamilnadu, India and Department of Mathematics, GTN Arts College, Dindigul - 624004, Tamilnadu, India. E. Mail-: sub- [email protected] †Department of Mathematics, RVS Technical Campus, Coimbatore-641 402, India. E. Mail-: svimalku- [email protected] ‡Department of Mathematics, Vignan’s Foundation For Science, Technology and Research, Guntur-522213, Andra Pradesh, India. E. Mail: [email protected] §PG & Research Department of Mathematics, Kongunadu Arts & Science College, Coimbatore - 641 029, Tamil Nadu, India. Email: [email protected]

1

257 International Journal of Pure and Applied Mathematics Special Issue

applied mathematics and for this reason these equations have received much attention in the last decades [1, 19, 26, 29]. But the literature related to neutral fractional differential equations with non-densely is very limited and we refer the reader to [9]. In this paper, we study the controllability of the solution for the fractional semi- linear functional differential equations of the form

cDq[x(t) f(t, x )] = Ax(t) + Cu(t) + g(t, x ), t (0, b] (1.1) − t t ∈ x (s) + (h(x , x , ..., x ))(s) = φ(s), s [ r, 0]. 0 t1 t2 tn ∈ − where cDq is the Caputo fractional of order 0 < q < 1, b > 0, r > 0. A : D(A) E ⊂ → E is a non-densely closed linear operator on E, E is a real Banach space with the norm . The |·| control u( ) is given in L2([0, b],U), a Banach space of admissible control functions · with U as a Banach space. is a bounded linear operator from U to E. Let ([ r, 0],E) C C − denote the space of all continuous functions with the sup-norm φ c = maxs [ r,o] φ(s) , g, f : k k ∈ − | | [0, ) ([ r, 0],E) E and h :( ([ r, 0],E))n E are given functions are satisfying some ∞ × C − → C − → assumption, φ ([ r, 0],E) and define x ([ r, 0],E) by x (s) = x(t + s), s [ r, 0], for ∈ C − t ∈ C − t ∈ − t [0, b]. ∈

2 Back ground results

In this section, we introduce notations, definitions, and preliminary results which are used in the rest of the paper. We denoted by ([0, b],E) a Banach space of all continuous functions C from [0, b] into E with the norm x = sup y(t) : t [0, b] . B(E) denotes the Banach || || {| | ∈ } space of bounded linear operators from E into E, with the norm N = sup N(y) : y = 1 . || || {| | | | } Assume that J R, and 1 p . For measurable functions m : J R, define the norm ⊂ ≤ ≤ ∞ → 1 p p J m(t) dt , 1 p < m p = | | ≤ ∞ || ||L J  infR p(J)=0 supt J J¯ m(t) , p = ,  ∈ − | | ∞  where µ(J¯) is the Lebesgue  on J¯. Let LP (J, R) be the Banach space of all Lebesgue

measurable functions m : J R with p < . → || · ||L J ∞ 1 1 r Lemma 2.1. (Holder’s inequality). Assume that r, p 1, and r + p = 1. If l L (J, R), then 1 ≥ ∈ for 1 p , lm L (J, R) and lm 1 l r m p . ≤ ≤ ∞ ∈ k kL J ≤ k kL J k kL J Lemma 2.2. (Bochner Theorem). A measurable function H : [0, b] E is Bochner’s integrable → if H is Lebesgue integrable. | | Lemma 2.3. (Schauder’s Fixed Point Theorem). If is a closed bounded and convex subset B of a Banach space E and F : is completely continuous, then F has a fixed point in . B → B B Lemma 2.1 - 2.3 are classical, which can be found in many books.

2

258 International Journal of Pure and Applied Mathematics Special Issue

Definition 2.1. [2] Let E be a Banach space. An integrated semigroup is a family of operators

S(t) t 0 of bounded linear operators S(t) on E with the following properties: { } ≥ (i) S(0) = 0;

(ii) t S(t) is strongly continuous; → (iii) S(s)S(t) = s(S(t + r) S(r))dr for all t, s 0. 0 − ≥ Definition 2.2. R[10] An operator A is called a generator of an integrated semigroup, if there exists ω R such that (ω, + ) ρ(A) and there exists a strongly continuous exponentially ∈ ∞ ⊂ 1 bounded family (S(t))t 0 of linear such that S(0) = 0 and (λI A)− = ≥ λt − λ 0∞ e− S(t)dt for all λ > ω.

DefinitionR 2.3. [2] Let A be the generator of an integrated semigroup (S(t))t 0. Then for all ≥ x E and t 0, t S(s)xds D(A) and S(t)x = A t S(s)xds + tx. ∈ ≥ 0 ∈ 0 Definition 2.4. [10]R We say that linear operator A satisfiesR the Hille-Yosida condition if there exist M 0 and ω R such that (ω, + ) ρ(A) and sup (λ ω)n R(λ, A)n , n N, λ > ω ≥ ∈ ∞ ⊂ { − k k ∈ } M. Here and hereafter, we assume that A satisfies the Hille-Yosida condition. Let us intro- ≤ duce the part A0 of A in D(A): A0 = A on D(A0) = x D(A); Ax D(A) . Let (S(t))t 0 ∈ ∈ ≥ be the integrated semigroup generated by A. We note thatn (S0(t))t 0 is a C0-semigroupo on D(A) ≥ generated by A and S (t) Meωt, t 0, where M and ω are the constants considered in the 0 k 0 k ≤ ≥ Hille-Yosida condition. Semiflows generated by Lipschitz perturbations of non-densely defined operators. Let B = λR(λ, A) := λ(λI A) 1, Then for all x D(A), B x x as λ . Also from λ − − ∈ λ → → ∞ the Hille-Yosida condition it is easy to see that limλ Bλx M x . →∞ | | ≤ | | Definition 2.5. [18] The fractional integral of order α R+ with the lower limit zero for a ∈ function f : R+ E is defined as → 1 t f(s) Iαf(t) = ds, t > 0, 0 < α < 1, Γ(α) (t s)1 α Z0 − − provided the right side is point-wise defined on R+, where Γ( ) is the Gamma function. · Definition 2.6. [18] Riemann-Liouville derivative of order α R+ with the lower limit zero ∈ for a function f : R+ E is defined by → 1 d t f(s) LDαf(t) = ds, t > 0, 0 < α < 1, Γ(n α) dt (t s)α − Z0 − provided the right side is point-wise defined on R+, where Γ( ) is the Gamma function. · Definition 2.7. [18] The Caputo derivative of order 0 < α < 1 of a continuous function f : R+ E is defined by → 1 t f 0 (s) cDαf(t) = ds, t > 0. Γ(n α) (t s)α − Z0 − 3

259 International Journal of Pure and Applied Mathematics Special Issue

3 Main results

Definition 3.1. Let φ ([ r, 0],E), a function x :[ r, b] E be an integral solution of ∈ C − − → problem (1.1) if

(i) x is continuous on the interval [0,b];

(ii) 1 t(t s)q 1x(s)ds D(A) for t [0, b]; Γ(q) 0 − − ∈ ∈ (iii) R

φ(0) (h(x , x , ..., x ))(0) f(0, x ) + f(s, x ) − t1 t2 tn − 0 s x(t) =  + 1 A t(t s)q 1x(s)ds + 1 t(t s)q 1[Cu(s) + g(s, x )]ds, t [0, b],  Γ(q) 0 − Γ(q) 0 − s  − − ∈ φ(t), t R[ r, 0], R ∈ −   Lemma 3.1. If x is an integral solution of (1.1), then for all t [0, b], x(t) D(A). In ∈ ∈ particular, x(0) = φ(0) D(A). ∈ Proof. The proof is similar to the proof of the Lemma 2.7 in [17].

1 n 1 qn 1 Γ(nq+1) + Lemma 3.2. [16] Let ψ (θ) = ∞ ( 1) θ sin(nπq), θ R , then ψ (θ) is q π n=1 − − − − n! ∈ q a one-sided stable probability densityP function and its Laplace transform is given by

∞ pθ pq e− ψ (θ)dθ = e− , q (0, 1), p > 0. (3.1) q ∈ Z0 Lemma 3.3. For t [0, b], the integral solution in Definition 3.1 is given by ∈

∞ q x(t) = hq(θ)S0(t θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ 0 − − Z t ∞ q 1 q + f(t, xt) + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 0 − − t Z Z ∞ q 1 q + lim q θ(t s) − hq(θ)S0((t s) θ)Bλ[Cu(s) + g(s, xs)]dθds, λ − − →∞ Z0 Z0 1 1 1 1 q q + where hq(θ) = q θ− − ψq(θ− ) is the probability density function defined on R .

Proof. From the definition, we have

x(t) =φ(0) (h(x , x , ..., x ))(0) f(0, x ) + f(s, x ) − t1 t2 tn − 0 s t t 1 q 1 1 q 1 + A (t s) − x(s)ds + (t s) − [Cu(s) + g(s, x )]ds, t [0, b] (3.2) Γ(q) − Γ(q) − s ∈ Z0 Z0

4

260 International Journal of Pure and Applied Mathematics Special Issue

Consider the Laplace transform

∞ pt ∞ pt v(p) = e− Bλx(t)dt, χ(p) = e− Bλf(s, xs)dt, Z0 Z0 ∞ pt w(p) = e− Bλ[Cu(s) + g(s, xs)]dt, p > 0. (3.3) Z0 Note that for each t > 0, B [Cu(s) + g(s, x )] D(A), then we have λ s ∈ 1 1 1 v(p) = [B φ(0) (h(x , x , ..., x ))(0) f(0, x )] + χ(p) + Av(p) + w(p) p λ − t1 t2 tn − 0 pq pq q 1 q 1 = p − (p I A)− [B φ(0) (h(x , x , ..., x ))(0) f(0, x )] − λ − t1 t2 tn − 0 q q 1 q 1 + p (p I A)− χ(p) + (p I A)− w(p) − − q 1 ∞ pqs = p − e− S0(s)B [φ(0) (h(x , x , ..., x ))(0) f(0, x )]ds λ − t1 t2 tn − 0 Z0 q ∞ pqs ∞ pqs + p e− S0(s)χ(p)ds + e− S0(s)w(p)ds (3.4) Z0 Z0 where I is the identity operator defined on E. From (3.1), we get

q 1 ∞ pqs p − e− S0(s)B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] ds λ − t1 t2 tn − 0 Z0 ∞ q 1 (pt)q q = q(pt) − e− S0(t )B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] dt λ − t1 t2 tn − 0 Z0 ∞ 1 d (pt)q q = − [e− S0(t )B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] dt p dt λ − t1 t2 tn − 0 Z0 ∞ ∞ ptθ q = θψq(θ)e− S0(t )Bλ [φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)] dθdt 0 0 − − Z Z q ∞ pt ∞ t = e− ψ (θ)S0 B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] dθ dt, q θ λ − t1 t2 tn − 0 Z0 Z0    (3.5)

∞ pqs e− S0(s)w(p)ds Z0 ∞ ∞ pqs pt = e− e− S0(s)Bλ[Cu(s) + g(s, xs)]dtds Z0 Z0 ∞ ∞ q 1 (ps)q pt q = qs − e− e− S0(s )Bλ[Cu(s) + g(s, xs)]dtds Z0 Z0 ∞ ∞ ∞ psθ pt q = qψq(θ)e− e− S0(s )Bλ[Cu(s) + g(s, xs)]dθdtds Z0 Z0 Z0 q 1 q ∞ ∞ ∞ p(s+t) s − s = qψq(θ)e− q S0 Bλ[Cu(s) + g(s, xs)]dθdtds 0 0 0 θ θ Z Z Z t q 1    q ∞ pt ∞ (t s) − (t s) = e− q ψ (θ) − S0 − B [Cu(s) + g(s, x )]dθdsdt q θq θq λ s Z0 Z0 Z0   (3.6)

5

261 International Journal of Pure and Applied Mathematics Special Issue

and

q ∞ pqs p e− S0(s)χ(p)ds Z0 (pt)q ∞ q (ps) ∞ ∞ ∞ q 1 (λt)q q ps = e− S0(t )e− f(s, x )ds + qt − e− AS0(t )e− f(s, x )dsdt − s s  Z0 t=0 Z0 Z0 t q q ∞ pt ∞ (t s) (t s) = e− f(t, x ) + q ψ (θ)AS0 − f(s, x ) − dθds dt. (3.7) t q θq s θq Z0  Z0 Z0    According to (3.4)-(3.7), we have

q ∞ pt ∞ t v(p) = e− ψ (θ)S0 B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] dθ dt q θ λ − t1 t2 tn − 0 Z0 Z0    t q 1 q ∞ pt ∞ (t s) − (t s) + e− q ψ (θ) − S0 − B [Cu(s) + g(s, x )]dθdsdt q θq θq λ s Z0 Z0 Z0   t q q ∞ pt ∞ (t s) (t s) + e− f(t, x ) + q ψ (θ)AS0 − f(s, x ) − dθds dt. t q θq s θq Z0  Z0 Z0    Inverting the last Laplace transform, we obtain

q ∞ t B x(t) = ψ (θ)S0 B [φ(0) (h(x , x , ..., x ))(0) f(0, x )] dθ λ q θ λ − t1 t2 tn − 0 Z0   t q q ∞ (t s) (t s) + f(t, x ) + q ψ (θ)AS0 − f(s, x ) − dθds t q θq s θq Z0 Z0   t q 1 q ∞ (t s) − (t s) + q ψ (θ) − S0 − B [Cu(s) + g(s, x )]dθds q θq θq λ s Z0 Z0   ∞ q = hq(θ)S0(t θ)Bλ [φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)] dθ 0 − − Z t ∞ q 1 q + f(t, xt) + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 0 − − t Z Z ∞ q 1 q + q θ(t s) − h (θ)S0((t s) θ)B [Cu(s) + g(s, x )]dθds. − q − λ s Z0 Z0

In view of limλ Bλx = x for x D(A) and Lemma 3.1, we have for t [0, b]. →∞ ∈ ∈

∞ q x(t) = hq(θ)S0(t θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ 0 − − Z t ∞ q 1 q + f(t, xt) + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 0 − − t Z Z ∞ q 1 q + lim q θ(t s) − hq(θ)S0((t s) θ)Bλ[Cu(s) + g(s, xs)]dθds. λ − − →∞ Z0 Z0 The proof is completed.

6

262 International Journal of Pure and Applied Mathematics Special Issue

Remark 3.1. One can verify that

1 1 ∞ θh (θ)dθ = ∞ ψ (θ)dθ = (3.8) q θq q Γ(1 + q) Z0 Z0 Lemma 3.4. [29] For any x E, β (0, 1) and η (0, 1], we have AT (t)x = A1 βT (t)Aβx, ∈ ∈ ∈ q − q qCn Γ(2 η 0 t a, and ATq(t) tqn Γ(1+q(1− η)) , 0 < t a. ≤ ≤ | | ≤ − ≤ Definition 3.2. The problem (1.1) is said to be controllable on the interval [0, b] if for every initial function π ([ r, 0],E) with π(0) D(A) and x D(A), there exists a control ∈ C − ∈ 1 ∈ u L2([0, b],U) such that the integral solution x(t) of (1.1) satisfies x(b) = x . we are now ∈ 1 in a position to state and prove our main results for the controllability of solutions of problem (1.1). Let us list the following assumptions:

(A1) A satisfies the Hille-Yosida condition.

(A2) The operator S0(t) is compact D(A) whenever t > 0 and satisfies supt [0, ] S0(t) = ∈ ∞ || || M < , where M is a constant. 0 ∞ 0 (A ) For each t [0, b], the function g(t, ): ([ r, 0],E) E is continuous and for each 3 ∈ · C − → v ([ r, 0],E), the function g( , v) : [0, b] E is strongly measurable. ∈ C − · → (A ) There exists a constant q [0, q) and a function m L1/q1 ([0, b],R+) such that 4 1 ∈ ∈ g(t, v) m(t) for all v ([ r, 0],E) and almost all t [0, b]. | | ≤ ∈ C − ∈ (A ) The function h : [0, b] E is continuous and there exists a constant β (0, 1) and 5 × C → ∈ H,H > 0 such that h D(Aβ) and for any x, y , the function Aβf( , x) is strongly 1 ∈ ∈ C · measurable and Aβf(t, ) satisfies the Lipschitz condition Aβf(t, x) Aβf(t, y) H x y β · − ≤ k − k and the inequality A f(t, x) H1( x + 1). ≤ k k

(A6) There exists a constant L > 0 such that h(xt1 , xt2 , ..., xtn ) h(yt1 , yt2 , ..., ytn ) k − k ≤ L x y , for x, y ([ r, b],E). k − k ∈ C − (A ) The linear operator W : L2([0, b],U) D(A) define by 7 → b ∞ q 1 q W u = lim q θ(b s) − hq(θ)S0((b s) θ)Bλ u(s)dθds λ − − C →∞ Z0 Z0 1 2 has an induced inverse operator W − which takes values in L ([0, b],U)/kerW and there 1 exists positive constants M1 and M2 such that M1 and W − M2. For each f ||C|| ≤ || || ≤ positive constant k, Let Bk = x ([0, b], D(A); x k), then Bk is clearly a bounded ∈ C || || ≤ f closed and convex subset in ([0, b],E). C Theorem 3.1. Let φ ([ r, 0],E) with φ(0) D(A). If the assumption (A ) - (A ) are ∈ C − ∈ 1 7 satisfied, then the problem (1.1) is controllable on the interval [0,b].

7

263 International Journal of Pure and Applied Mathematics Special Issue

Proof. Using assumption (A ), for arbitrary function x( ) and x D(A), we define the control 5 · 1 ∈

1 ∞ q ux(t) = W − x1 hq(θ)S0(b θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ − 0 − − h Z b f ∞ q 1 q f(t, xt) q θ(b s) − hq(θ)AS0((b s) θ)f(s, xs)dθds − − 0 0 − − b Z Z ∞ q 1 q lim q θ(b s) − hq(θ)S0((b s) θ)Bλg(s, xs)dθds (t). (3.9) − λ 0 0 − − →∞ Z Z i Using this control we will prove that the operator F : B ([0, b], D(A)) defined by k → C

∞ q (F x)(t) = hq(θ)S0(t θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ 0 − − Z t ∞ q 1 q + f(t, xt) + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 0 − − t Z Z ∞ q 1 q + lim q θ(t s) − hq(θ)S0((t s) θ)Bλ[Cus(s) + g(s, xs)]dθds, t [0, b] λ − − ∈ →∞ Z0 Z0 has a fixed point x( ). Then it is easy to check that x(b) = (F x)(b) = x , which implies that the · 1 system (1.1) is controllable. We will firstly show that for a positive constant k, the operator

F is well defined on Bk. In fact, in view of supt [0, ] S0(t) = M0 < , for any positive ∈ ∞ || || ∞ constant k and x B , we have ∈ k

∞ q h (θ)S0(t θ)[φ(0) (h(x , x , ..., x ))(0) f(0, x )]dθ q − t1 t2 tn − 0 Z0 β β M φ(0) + L x v + h(x , x , ..., x )(0) + A− A f(0, x ) ≤ 0 | | k − k | t1 t2 tn | | 0 |  β  M φ(0) + Lk + h(x , x , ..., x )(0) + A− H (k + 1) . (3.10) ≤ 0 | | | t1 t2 tn | | | 1   For x Bk, since x(t) is continuous in t, according to (A2), g(t, xt) is a measurable function ∈ 1 q 1 1 q on [0, b]. Direct calculation show that (t s) − L − 1 [0, t], for t [0, b] and q1 [0, q). Let q 1 − ∈ ∈ ∈ a = − ( 1, 0), M = m 1 . 1 q1 3 − ∈ − k kL q1 [0,t] By using Lemma 2.1 and (A ), for t [0, b], we have 4 ∈

1 q1 t t q 1 − q 1 1 −q (t s) − g(s, xs) ds (t s) − 1 ds m 1 − ≤ − k kL q1 [0,t] Z0 Z0 

M3 (1+a)(1 q1) b − . (3.11) 1 q1 ≤ (1 + a) −

8

264 International Journal of Pure and Applied Mathematics Special Issue

From (A ), (3.8),(3.10) and by the fact that B M, we get 2 k λk ≤ t ∞ q 1 q θ(t s) − h (θ)S0((t s) θ)B g(s, x )dθ ds − q − λ s Z0 Z0 t ∞ q 1 MM θh (θ) (t s) − g(s, x )dθ ds ≤ 0 q − s Z0 Z0 t MM0 q 1 (t s) − g(s, x ) ds ≤ Γ(1 + q) − s Z0

MM0M3 (1+a)(1 q1) b − , for t [0, b]. (3.12) 1 q1 ≤ Γ(1 + q)(1 + a) − ∈

For x B , according to (A ), (A ) and (3.9), we have ∈ k 2 5 t ∞ q 1 q θ(t s) − h (θ)S0((t s) θ)B Cu (s)dθ ds − q − λ x Z0 Z0 t MM0M1 q 1 (t s) − ux(s) U ds ≤ Γ(1 + q) 0 − | | Z q MM0M1M2b qMM0M3 (1+a)(1 q1) x1 + M0 φ(0) + b − , (3.13) ≤ qΓ(1 + q) | | | | Γ(1 + q)(1 + a)1 q1  −  where symbol denotes the norm. Therefore | · |U

∞ q 1 q θ(t s) − h (θ)S0((t s) θ)B [Cu (s) + g(s, x )]dθ − q − λ x s Z0

is Lebesgue integrable with respect to s [0, t] for all t [0, b]. From Lemma 2.2, we get ∈ ∈

∞ q 1 q θ(t s) − h (θ)S0((t s) θ)B [Cu (s) + g(s, x )]dθ − q − λ x s Z0 is Bochner integrable with respect to s [0, t] for all t [0, b]. Note that ∈ ∈ t q 1 q 1 (t s) − (λI A)S0((t s) θ)(λI A)− [Cu (s) + g(s, x )]ds D(A), − − − − x s ∈ Z0 we get

t q 1 q 1 lim Bλ (t s) − (λI A)S0((t s) θ)(λI A)− [Cux(s) + g(s, xs)]ds λ − − − − →∞ 0 Z t q 1 q 1 = lim Bλ(λI A) (t s) − S0((t s) θ)(λI A)− [Cux(s) + g(s, xs)]ds λ − − − − →∞ 0 t Z q 1 q = lim (t s) − S0((t s) θ)Bλ[Cux(s) + g(s, xs)]ds λ − − →∞ Z0

9

265 International Journal of Pure and Applied Mathematics Special Issue

exists. Thus,

t ∞ q 1 q q θhq(θ) lim (t s) − S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dsdθ λ − − 0 →∞ 0 Z Z t ∞ q 1 q = lim q θhq(θ) (t s) − S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dsdθ λ − − →∞ 0 0 Z t Z ∞ q 1 q = lim q θ(t s) − hq(θ)S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Z0 Z0

exists. Using above the equation and (3.10) we conclude that F is well defined on Bk. According

to [29] and hypothesis (A5), we obtain the following relation

t ∞ q 1 q θ(t s) − h (θ)S0((t s) θ)f(s, x )dθ ds − q − s Z0 Z0 t 1 q 1 1 β q β (t s) − A − S0((t s) θ)A f (s, xs) ds ≤ Γ(1 + q) 0 − − Z 1 Γ(1 + β) qβ C1 βH1(k + 1)b . (3.14) ≤ Γ(1 + q) βΓ(1 + qβ) −

Next, we will prove F x = x has a fixed point on Bk, which is equivalent to determining a

positive constant k0 such that F has a fixed point on Bk0 . In fact, by choosing

β β k =M φ(0) + Lk + h(x , x , ..., x )(0) + A− H (k + 1) + A− H (k + 1) 0 0 | | | t1 t2 tn | | | 1 | | 1  1 Γ(1 + β) qβ  + C1 βH1(k + 1)b Γ(1 + q) βΓ(1 + qβ) − q MM0M1M2b qMM0M3 (1+a)(1 q1) + x1 + M0 φ(0) + b − qΓ(1 + q) | | | | Γ(1 + q)(1 + a)1 q1  −  MM0M3 (1+a)(1 q1) + b − , 1 q1 Γ(1 + q)(1 + a) −

we can prove that F has a fixed point on Bk0 . The proof will be divided into five steps. Step 1. For x B , F x k . ∈ k0 || || ≤ 0 Let x B and t [0, b], according to (3.10), (3.12) and (3.13), we obtain ∈ k0 ∈

β β (F x)(t) M φ(0) + Lk + h(x , x , ..., x )(0) + A− H (k + 1) + A− H (k + 1) | | ≤ 0 | | | t1 t2 tn | | | 1 | | 1  1 Γ(1 + β) qβ  + C1 βH1(k + 1)b Γ(1 + q) βΓ(1 + qβ) − q MM0M1M2b qMM0M3 (1+a)(1 q1) + x1 + M0 φ(0) + b − qΓ(1 + q) | | | | Γ(1 + q)(1 + a)1 q1  −  MM0M3 (1+a)(1 q1) + b − 1 q1 Γ(1 + q)(1 + a) − k . ≤ 0 Hence, F x k for every pair x B . || || ≤ 0 ∈ k0

10

266 International Journal of Pure and Applied Mathematics Special Issue

Step 2. F is continuous on Bk0 . n n Let x , x Bk (n = 1, 2, ...), such that limn x x = 0. From the definition of , we 0 →∞ ⊂ n || − || n || · || have limn xt = xt, t [0, b]. Then from (H3), we have limn g(t, xt ) = g(t, xt), t [0, b]. →∞ →∞ ∈ n ∈ It follows that sups [0,b] g(s, xs ) g(s, xs) 0, as n . On the other hand, for t [0, b], ∈ | − | → → ∞ ∈

u n (t) u (t) | x − x |U b 1 ∞ q 1 q n = W − lim q θ(b s) − hq(θ)S0((b s) θ)Bλ (g(s, xs ) g(s, xs)) dθds (t) λ − − −  →∞ Z0 Z0  U b f ∞ q 1 q n M 2 lim q θ(b s) − hq(θ)S0((b s) θ)Bλ (g(s, xs ) g(s, xs)) dθds ≤ λ − − − →∞ Z0 Z0 q MM 0M2b n sup g(s, xs ) g(s, xs) . ≤ Γ(1 + q) s [0,b] | − | ∈ Therefore, for t [0, b], ∈ (F xn)(t) (F x)(t) | − | t ∞ q 1 q n = lim q θ(t s) − hq(θ)S0((t s) θ)Bλ (g(s, xs ) g(s, xs)) dθds λ − − − →∞ 0 0 Z Z t ∞ q 1 q + lim q θ(t s) − hq(θ)S0((t s) θ)Bλ (Cuxn (s) Cux(s)) dθds λ − − − →∞ 0 0 Zt Z qMM 0 q 1 n (t s) − g(s, xs ) g(s, xs) ds ≤ Γ(1 + q) 0 − | − | Z t qMM0M1 q 1 + (t s) − uxn (s) ux(s) ds Γ(1 + q) 0 − | − | q Z q MM0b n MM0M1b sup g(s, xs ) g(s, xs) + sup uxn (s) ux(s) , ≤ Γ(1 + q) s [0,b] | − | Γ(1 + q) s [0,b] | − | ∈ ∈ which implies F xn F x 0, as n . This is show that F is continuous. k − k → → ∞ Step 3. The family F x, x B is equicontinuous. { ∈ k0 } For any x B and 0 t t a, we have ∈ k0 ≤ 1 ≤ 2 ≤ (F x)(t ) (F x)(t ) 2 − 1

∞ q = hq(θ)S 0(t2θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ 0 − − Z ∞ q hq(θ)S0(t θ)[φ(0) (h(xt , xt , ..., xt ))(0) f(0, x0)]dθ − 1 − 1 2 n − Z0 + f(t , x ) f(t , x ) 2 t − 1 t t2 ∞ q 1 q + q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds 2 − q 2 − s Z0 Z0 t1 ∞ q 1 q q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds − 1 − q 1 − s Z0 Z0

11

267 International Journal of Pure and Applied Mathematics Special Issue

t2 ∞ q 1 q + lim q θ(t2 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Z0 Z0 t1 ∞ q 1 q lim q θ(t1 s) − hq(θ)S0((t1 s) θ)Bλ[Cux(s) + g(s, xs)]dθds − λ 0 0 − − →∞ Z Z ∞ q q hq(θ) S0(t θ) S0(t θ) [φ(0) (h(xt , xt , ..., xt ))(0) f(0, x0)]dθ ≤ 2 − 1 − 1 2 n − Z0 t2   ∞ q 1 q + q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds 2 − q 2 − s Zt1 Z0 t1 ∞ q 1 q + q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds 2 − q 2 − s Z0 Z0 t1 ∞ q 1 q q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds − 1 − q 2 − s Z0 Z0 t1 ∞ q 1 q + q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds 1 − q 2 − s Z0 Z0 t1 ∞ q 1 q q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds − 1 − q 1 − s Z0 Z0 t2 ∞ q 1 q + lim q θ(t2 s) − hq(θ)S0((t2 s) θ)Bλ[Cux (s) + g(s, xs)]dθds λ − − →∞ Zt1 Z0 t1 ∞ q 1 q + lim q θ(t2 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Z0 Z0 t1 ∞ q 1 q lim q θ(t1 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds − λ − − →∞ Z0 Z0 t1 ∞ q 1 q + lim q θ(t1 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Z0 Z0 t1 ∞ q 1 q lim q θ(t1 s) − hq(θ)S0((t1 s) θ)Bλ[Cux(s) + g(s, xs)]dθds − λ 0 0 − − →∞ Z Z + f(t , x ) f(t , x ) | 2 t − 1 t | ∞ q q = h (θ) S0(t θ) S0(t θ) [φ(0) (h(x , x , ..., x ))(0) f(0, x )]dθ q 2 − 1 − t1 t2 tn − 0 Z0 t2   ∞ q 1 q + q θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds 2 − q 2 − s Zt1 Z0 t1 ∞ q 1 q 1 q + q θ (t s) − (t s) − h (θ)AS0((t s ) θ)f(s, x )dθds 2 − − 1 − q 2 − s Z0 Z0 t1   ∞ q 1 q q + q θ(t s) − h (θ)A S0((t s) θ) S0((t s) θ) f(s, x )dθds 1 − q 2 − − 1 − s Z0 Z0 t2   ∞ q 1 q + lim q θ(t2 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Zt1 Z0 t1 ∞ q 1 q 1 q + lim q θ (t2 s) − (t1 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − − − →∞ Z0 Z0 t1   ∞ q 1 q q + lim q θ(t1 s) − hq(θ) S0((t2 s) θ) S0((t1 s) θ) Bλ[Cux(s) + g(s, xs)]dθds λ 0 0 − − − − →∞ Z Z + f(t , x ) f(t , x )   | 2 t − 1 t |

12

268 International Journal of Pure and Applied Mathematics Special Issue

= I1 + q (I2 + I3 + I4 + I5 + I6 + I7) + I8

where

∞ q q I = h (θ) S0(t θ) S0(t θ) [φ(0) (h(x , x , ..., x ))(0) f(0, x )]dθ , 1 q 2 − 1 − t1 t2 tn − 0 Z0 t2   ∞ q 1 q I = θ(t s) − h (θ)AS0((t s) θ)f(s, x )dθds , 2 2 − q 2 − s Zt1 Z0 t1 ∞ q 1 q 1 q I = θ (t s) − (t s) − h (θ)AS0((t s ) θ)f(s, x )dθds , 3 2 − − 1 − q 2 − s Z0 Z0 t1   ∞ q 1 q q I = θ(t s) − h (θ)A S0((t s) θ) S0((t s) θ) f(s, x )dθds , 4 1 − q 2 − − 1 − s Z0 Z0 t2   ∞ q 1 q I5 = lim θ(t2 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds , λ − − →∞ Zt1 Z0 t1 ∞ q 1 q 1 q I6 = lim θ (t2 s) − (t1 s) − hq(θ)S0((t2 s) θ)Bλ[Cux(s) + g(s, xs)]dθds , λ − − − − →∞ Z0 Z0 t1   ∞ q 1 q q I7 = lim θ(t1 s) − hq(θ) S0((t2 s) θ) S0((t1 s) θ) Bλ[Cux(s) + g(s, xs)]dθds . λ 0 0 − − − − →∞ Z Z I = f(t , x ) f(t , x )   8 | 2 t − 1 t | By using analogous argument performed in (3.12) and (3.13), we can conclude that

q MM0M3 (1+a)(1 q1) MM0M1M2(t2 t1) I5 b − + − x1 + M0 φ(0) 1 q1 ≤ Γ(1 + q)(1 + a) − qΓ(1 + q) | | | |  qMM0M3 (1+a)(1 q1) q + b − (t2 t1) , 1 q1 Γ(1 + q)(1 + a) − − t  MM 1 1 (1 q1) 0 q 1 q 1 1 q − I ((t s) − (t s) − ) − 1 ds m 1 6 1 2 q ≤ Γ(1 + q) − − − || ||L 1 [0,t1] Z0  t1  MM0M1M2 q 1 q 1 + ((t1 s) − (t2 s) − )ds x1 + M0 φ(0) Γ(1 + q) 0 − − − | | | | Z  qMM0M3 (1+a)(1 q1) + b − 1 q1 Γ(1 + q)(1 + a) − t  MM M 1 (1 q1) 0 3 ((t s)a (t s)a)ds − ≤ Γ(1 + q) 1 − − 2 − Z0  t1  MM0M1M2 q 1 q 1 + ((t1 s) − (t2 s) − )ds x1 + M0 φ(0) Γ(1 + q) 0 − − − | | | | Z  qMM0M3 (1+a)(1 q1) + b − 1 q1 Γ(1 + q)(1 + a) − 

Hence limt2 t1 I5 = 0, and limt2 t1 I6 = 0. Using the similar argument and (A5), we can → → conclude that limt2 t1 I2 = 0, limt2 t1 I3 = 0 and limt2 t1 I8 = 0. → → → On the other hand, (A2) implies that S0(t) for t > 0 is continuous in the uniform operator

13

269 International Journal of Pure and Applied Mathematics Special Issue

topology, then from the Lebesgue domainated convergence theorem, we get

∞ q q lim I1 = lim hq(θ) S0(t2θ) S0(t1θ) [φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0)]dθ , t2 t1 t2 t1 0 − − − → → Z ∞  q q  = h q(θ) lim S0(t2θ) S0(t1θ) φ(0) (h(xt1 , xt2 , ..., xtn ))(0) f(0, x0) dθ t2 t1 || − ||| − − | Z0 → = 0,

t1 ∞ q 1 q q lim I4 = lim θ(t1 s) − hq(θ)A S0((t2 s) θ) S0((t1 s) θ) f(s, xs)dθds , t2 t1 t2 t1 − − − − → → Z0 Z0 t1   ∞ q 1 q q = θ(t1 s) − hq(θ)A lim S0((t2 s) θ) S0((t1 s) θ) f(s, xs) dθds, − t2 t1 || − − − ||| | Z0 Z0 → = 0,

t1 ∞ q 1 q q lim I7 = lim M θ(t1 s) − hq(θ) S0((t2 s) θ) S0((t1 s) θ) Cux(s) t2 t1 t2 t1 − || − − − ||| → → Z0 Z0 + g(s, x ) dθds s | t1 ∞ q 1 q q = M θ(t1 s) − hq(θ) lim S0((t2 s) θ) S0((t1 s) θ) Cux(s) − t2 t1 || − − − ||| Z0 Z0 → + g(s, x ) dθds s | = 0.

Consequently, (F x)(t ) (F x)(t ) 0 independently of x B as t t , which mean that | 2 − 1 | → ∈ k0 2 → 1 F is continuous on Bk0 . Step 4. For each t [0, b],V (t) = (F x)(t), x B is relatively compact in E. ∈ { ∈ k0 } Obviously, V(0) is relatively compact in E. Let 0 < t < b be fixed. For arbitrary  (0, t) and ∈ δ > 0, define an operator F,δ on Bk0 by

∞ q (F,δx)(t) = hq(θ)S0(t θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) + f(0, x0)]dθ δ − Z t  − ∞ q 1 q + f(t, xt) + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 δ − − t Z Z − ∞ q 1 q + lim q θ(t s) − hq(θ)S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ Z0 Zδ ∞ q q q = hq(θ)S0(t δ)S0(t θ t δ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) + f(0, x0)]dθ δ − − Z t  − ∞ q 1 q q q + f(t, xt) + q θ(t s) − hq(θ)AS0( δ)S0((t s) θ  δ)f(s, xs)dθds 0 δ − − − t Z Z − ∞ q 1 q q q + lim q θ(t s) − hq(θ)S0( δ)S0((t s) θ  δ)Bλ[Cux(s) λ − − − →∞ Z0 Zδ + g(s, xs)]dθds

where x B . Then from the compactness of S (tqδ) and S (qδ), we get that the set V (t) = ∈ k0 0 0 ,δ (F x)(t), x B is relatively compact in E for each  (0, t) and δ > 0. Moreover, for { ,δ ∈ k0 } ∈

14

270 International Journal of Pure and Applied Mathematics Special Issue

every x B , we have ∈ k0 (F x)(t) (F x)(t) | − ,δ | ∞ q hq(θ)S0(t θ)[φ(0) (h(xt1 , xt2 , ..., xtn ))(0) + f(0, x0)]dθ ≤ 0 − Z t δ q 1 q + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds 0 0 − − Z t Z ∞ q 1 q + q θ(t s) − hq(θ)AS0((t s) θ)f(s, xs)dθds t  δ − − Z − Z t δ q 1 q + q lim θ(t s) − hq(θ)S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ − − →∞ 0 0 Z t Z ∞ q 1 q + q lim θ(t s) − hq(θ)S0((t s) θ)Bλ[Cux(s) + g(s, xs)]dθds λ t  δ − − →∞ Z − Z δ β M0 φ(0) + Lk + h(xt1 , xt2 , ..., xtn )(0) + A− H1(k + 1) θhq(θ)dθ ≤ | | | | | | 0  δ  Z Γ(1 + β) qβ + C1 βH1(k + 1)b θhq(θ)dθ βΓ(1 + qβ) − Z0 Γ(1 + β) qβ ∞ + C1 βH1(k + 1)b θhq(θ)dθ βΓ(1 + qβ) − Zδ 1 q1 t q 1 − δ 1 −q + qMM0 (t s) − 1 ds m 1 θhq(θ)dθ − || ||L q1 [0,t] Z0  Z0 δ q qMM0M3 (1+a)(1 q1) + MM0M1M2b x1 + M0 φ(0) + b − θhq(θ)dθ | | | | Γ(1 + q)(1 + a)1 q1  −  Z0 1 q1 t q 1 − 1 −q ∞ + qMM (t s) − 1 ds m 1 θh (θ)dθ 0 q q t  − || ||L 1 [t ,t] 0 Z −  − Z MM0M1M2 qMM0M3 (1+a)(1 q1) q + x1 + M0 φ(0) + b −  0 as , δ 0. qΓ(1 + q) | | | | Γ(1 + q)(1 + a)1 q1 → →  −  Therefore, there are relatively compact sets arbitrarily close to the set V (t), t > 0. Hence the set V (t), t > 0 is also relatively compact in E. As a consequence of the Arzela-Ascoli theorem it is concluded that F x, x B is a completely continuous operator. Then all the conditions ∈ k0 of Lemma 2.3 are satisfied, hence F has a fixed point on Bk0 . Therefore, the problem (1.1) is controllable. The proof is completed.

4 Example

As an application of our results we consider the following fractional neutral functional dif- ferential equations of the form

15

271 International Journal of Pure and Applied Mathematics Special Issue

π ∂2 cDq[u(t, z) U(z, y)u (s, y)dy] = (u(t, z) + Cu(t) + g(t, u(t r, z)), z [0, π], t (0, b], − t ∂z2 − ∈ ∈ Z0 u(t, 0) = u(t, π) = 0, t [0, b], (4.1) ∈ n π

u(s, z) + k(z, y)uti (s, y)dy = (φ(s))(z), s [ r, 0] 0 ∈ − Xi=0 Z where cDq is a Caputo fractional neutral functional derivative of order 0 < q < 1, b > 0, f : [0, b] R R is a given function, n is a positive integer, 0 < t < t < ... < t < b, × → 0 1 n φ ([ r, 0],E), that is φ(z) E. Consider E = L2([0, π]; R) endowed with the uniform ∈ C − ∈ topology and the operator A : D(A) E E defined by ⊂ → ∂2 D(A) = u L2([0, π]; R): u(t, 0) = u(t, π) = 0 , Au = (u(t, z)). { ∈ } ∂z2 Now, we have D(A) = u E : u(t, 0) = u(t, π) = 0 = E. { ∈ } 6 As we know from [4], R(λ, A) 1 , A satisfies the Hille-Yosida condition with (0, + ) ρ(A) | | ≤ λ ∞ ⊆ and λ > 0. Hence, operator A satisfies (A1), (A2) and M = M0 = 1. The system(4.1) can be reformulated as the following fractional neutral functional differential equations

cDq[x(t) f(t, x )] = Ax(t) + Cu(t) + g(t, x ), t (0, b] (1.1) − t t ∈ x (s) + (h(x , x , ..., x ))(s) = φ(s), s [ r, 0]. 0 t1 t2 tn ∈ − where x = u (s, ), that is (x(t + s))(z) = u(t + s, z), t [0, b], z [0, π], s [ r, 0]. The t t · ∈ ∈ ∈ − function h : [0, b] E is given by × C → π f(t, x )z = U(z, y)u t(s, y)dy. t − Z0 The function g : n = is given by C C n

(h(xt1 , xt2 , ..., xtn ))(s) = Kgxti (s), Xi=0 where (K v)(z) = π k(z, y)v(y)dy, for v E, z [0, π]. Take g 0 ∈ ∈ R 1 t u t r, x g(t, u(t r, x)) = e− | − | + sin t, t [0, b], − 6√π 1 + u t r, x ∈  | − | then we have f : [0, b] R R is continuous functions. Moreover, × →

1 t 1/q1 + g(t, u) = e− + sin t := m(t) L ([0, b],R ). | | 6√π | | ∈

16

272 International Journal of Pure and Applied Mathematics Special Issue

Therefore, assumptions (A ), (A ) are satisfied W : L2([0, b],U) D(A) defined by 3 4 → b ∞ q 1 q W u = lim q θ(b s) − hq(θ)S0((b s) θ)BλCu(s)dθds λ − − →∞ Z0 Z0

satisfies assumption (A7). Then all conditions of Theorem 3.1 are satisfied and we deduce the problem 4.1 is controllable.

References

[1] R. P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differ- ential equations, Computers and Mathematics with Applications 59(2010) 1095-1100.

[2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. (3)59 (1987) 327-352.

[3] K. Balachandran, R. Sakthivel, Controllability of integrodiffential systems in Banach space, Appl. Math. Comput. 118 (2001) 63-71

[4] G. Da Prato and E. sinestrari, Differential operators with non-dense domain, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (14) (1987) 285-344.

[5] J.P. Dauer, N.I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl. 273 (2002) 310327.

[6] X. Fu, Controllability of non-densely defined functional differential systems in abstract space. Appl. Math. Lett. 19 (2006) 369-377.

[7] E.P. Gatsori, Controllability results for non densely defined evolution differential in- clusions with nonlocal conditions. J. Math. Anal. Appl. 297 (2004) 194-211.

[8] A. Grans, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[9] V. Kavitha and M. Mallika Arjunan, Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach space, Nonl. Anal. 4(2010) 441-450.

[10] H. Kellerman and M. Hieber, Inegrated semigroups, J. Funct. Anal. 84 (1989) 160- 180.

[11] H. Khalil, R. A. Khan, A new method based on Legendre polynomials for solution of the fractional two-dimensional heat conduction equation, Computers and Mathemat- ics with Applications, 67 (2014) 1938-1953.

[12] A. A. Kilbas. H. M. Srivastava, J.J Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

17

273 International Journal of Pure and Applied Mathematics Special Issue

[13] J. Klamka, Schauders fixed-point theorem in nonlinear controllability problems, Contr. Cybern. 29 (2000) 153165.

[14] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008) 2677-2682.

[15] Z. Liu, M. Bin, Approximate controllability for impulsive Riemann-Liouville fractional differential inclusions, Abstr. Appl. Anal. 2013 (2013) 639492.

[16] F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by frac- tional diffusion equations,In:Econophysics:An Emerging Science, Kluwer, Dordrecht, 2000.

[17] G.M. Mophou and G.M. Nguerekata, On integral solutions of some non local fractional differential equations with nondense domain, Nonl. Anal. 71 (2009) 4668-4675.

[18] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego,1999.

[19] C. Ravichandran and D. Baleanu, Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces, Adva. in Diff. Eqn., 2013 2013:215

[20] R. Sakthivel, Q. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evaluation intergrodifferential system, J. Math. Anal. Appl. 275 (2002) 402-417.

[21] R. Sakthivel, N.I. Mahmudov and Juan. J. Nieto, Controllability for a class of fractional-order neutral evoluation control systems, Applied Mathematics and Com- putation, 218 (2012) 10334-10340.

[22] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional and : Theory and Applications, Gordon and Breach Science Publisher, Yverdon, 1993.

[23] S. Sarwar, S. Alkhalaf, S. Iqbal, M. A. Zhahid, A note on optimal homotopy asymtotic method for the solutions of the fractional order heat- and wave-like partial differential equations, Computers and Mathematics with Applications, 70 (2015) 942-953.

[24] V. E. Tarasov, Fractional Dynamics: Applications of Fractional calculus to Dynamics of particles, Fields and Media, Springer Science and Business Media, Newyork, 2011.

[25] V. Vijayakumar, C. Ravichandran, R. Murugesu and J.J. Trujillo, Controllability results for a class of fractional semilinear intergo-differential inclusions via resolvent operators, Appl. Math. Comput. 247 (2014) 152-161.

[26] Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform, 30 (2013) 443-462.

18

274 International Journal of Pure and Applied Mathematics Special Issue

[27] X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on cantor sets, Appl. Math. Lett. 47 (2015) 54-60.

[28] X. J. Yang, J. A. Tenreiro Machado, H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach, Applied Mathematics and Computation, 271 (2016) 143-151.

[29] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. 59 (2010) 1063-1077.

[30] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singa- pore, 2014.

19

275 276