Eocene Journal Anacardiaceae 38 (4), 2017: 543–552From Chiapas, Mexico 543

Total Page:16

File Type:pdf, Size:1020Kb

Eocene Journal Anacardiaceae 38 (4), 2017: 543–552From Chiapas, Mexico 543 Pérez-Lara et IAWAal. – Eocene Journal Anacardiaceae 38 (4), 2017: 543–552from Chiapas, Mexico 543 A new genus of Anacardiaceae fossil wood from El Bosque Formation (Eocene), Chiapas, Mexico Diana K. Pérez-Lara1, Carlos Castañeda-Posadas1, and Emilio Estrada-Ruiz2,* 1Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Biológicas, Blvd. Valsequillo y Av. San Claudio, Edificio BIO-1, Ciudad Universitaria, 72570 Puebla, México 2Laboratorio de Ecología, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, 11340 Ciudad de México, México *Corresponding author; e-mail: [email protected] ABSTRACT We describe a new fossil wood from the El Bosque Formation (Eocene) in Chiapas, southern Mexico. It has a combination of features found in the Anac- ardiaceae, including distinct growth rings, diffuse porosity, vessels solitary and in radial multiples of 2–3, simple perforation plates, medium to large alternate intervessel pits, vessel-ray parenchyma pits rounded and elongate with reduced borders, septate and non-septate fibers, axial parenchyma scanty paratracheal, vasicentric, apotracheal diffuse, Kribs heterogeneous rays type IIA, and mul- tiseriate rays with radial canals. The mosaic of features of this wood supports the erection of a new genus, Bosquesoxylon Pérez-Lara, Castañeda-Posadas et Estrada-Ruiz. This new genus of anacardiaceous fossil wood extends our knowl- edge of this family’s history and offers hints on the possible relationships with floras from other localities worldwide, especially North America and Asia. Keywords: Anacardiaceae wood, Bosquesoxylon, Eocene, Chiapas, Mexico. INTRODUCTION Anacardiaceae is a family with around 75 genera and 1000 species, represented by trees, shrubs and some woody climbers, with a wide distribution in tropical and warm-tem- perate regions (Mabberley 2008). In Mexico, there are ~62 extant species distributed in 20 genera, including some trees of economic importance, e.g., Spondias purpurea L. (jocote) (Martínez-Millán & Cevallos-Ferriz 2005; Medina-Lemus & Fonseca 2009). Anacardiaceae have an abundant fossil record. Fossils of the family have been reported worldwide, principally in America and Asia. In a literature review, Ramírez- Garduño (1996) listed ~120 fossil species in 30 genera, and that number has recently in- creased. In Mexico, several anacardiaceous macrofossils have been described, including flowers, leaves and woods. An Oligocene wood resembling Loxopterygium Hook. f. from Coayuca de Andrade, Puebla (Méndez-Cárdenas et al. 2014); Oligocene-Miocene flower and wood of Tapirira (Miranda 1963; Martínez-Cabrera & Cevallos-Ferriz 2004, respectively). Leaves and/or leaflets of Pseudosmodingium Engl., Haplorhus © International Association of Wood Anatomists, 2017 DOI 10.1163/22941932-20170179 Published by Koninklijke Brill NV, Leiden Downloaded from Brill.com10/06/2021 01:24:04AM via free access 544 IAWA Journal 38 (4), 2017 Engl., Rhus L., Comocladia L., and Pistacia L. from the Oligocene Los Ahuehuetes locality Tepexi de Rodríguez in Puebla (Ramírez et al. 2000; Ramírez & Cevallos- Ferriz 2002). The record of anacardiaceous fossil woods is rich, with approximately 78 wood types reported worldwide (e.g., Awasthi 1966; Gregory et al. 2009). The majority of the records are from Cenozoic sediments of Europe, Asia, and North and South America (Martínez-Cabrera & Cevallos-Ferriz 2004; Gregory et al. 2009). The oldest known ana- cardiaceous woods are Anacardiaceoxylon semecarpoides Prakash & Dayal (1964), and Dracontomeloxylon palaeomangiferum Prakash from the latest Cretaceous-earliest Paleocene Deccan Intertrappean Beds of India (Bande & Khatri 1980; Wheeler et al. 2017). The Deccan sample of Lanneoxylon grandiosum that Srivastava and Guleria (2004) described has features of both the Anacardiaceae and Burseraceae clade of the Sapindales (Wheeler et al. 2017). Recently, Estrada-Ruiz et al. (2010) described wood resembling Anacardiaceae /Burseraceae from the late Campanian of the Olmos Formation. We describe a new genus and species of Anacardiaceae from the El Bosque Formation (Eocene). Bosquesoxylon represents the oldest record of radial canals in Mexico. This new fossil wood further supports the hypothesis that Mexico has been a diversification center of the Anacardiaceae since the Paleogene, as suggested by its extant and fossil diversity in Mexico. MATERIALS AND METHODS Fossil wood was collected from a single outcrop locality of the El Bosque Formation. The locality is known as “Las Maderas Acala” and is located approximately 10 km southeast of the county seat Acala, Chiapas, Mexico (92°43'47" N and 16°30'41" W) (Fig. 1). -93° -92° -92° -92° -92° 16° 16° 16° 16° 16° 16° 16° 16° 16° 16° Figure 1. Location of the fossiliferous outcrop. -93° -92° -92° -92° -92° Downloaded from Brill.com10/06/2021 01:24:04AM via free access Pérez-Lara et al. – Eocene Anacardiaceae from Chiapas, Mexico 545 The Bosque Formation has been dated as Eocene. This formation consists of a sequence of ~37 meters of strata and is a rhythmic sequence of siltstones, shales, cal- careous sandstones, and occasional polymictic conglomerates. The Bosque Formation has yielded invertebrate fossils such as gastropods, bivalves, echinoderms, some verte- brates (e.g., sharks and turtles), calcareous algae, leaf impressions, and permineralized woods (Juárez-Hernández 2014). These sediments belong to a continental sedimentary environment marked by marine transgressions and regressions (Juárez-Hernández 2014). In some studies, this formation is divided as the El Bosque (lower Eocene) and San Juan (middle Eocene) Formations (Frost & Langenheim 1974; Müllerried 1982; Ferrusquía et al. 2000). The wood described herein was found in sediments within the El Bosque Formation. We prepared transverse (TS), tangential (TLS), and radial (RLS) sections using standard thin section techniques. The descriptions use terminology from the IAWA Hardwood List (IAWA Committee 1989). Affinities were determined by consulting the literature (e.g., Metcalfe & Chalk 1950; Détienne & Jacquet 1983; Ilic 1987, 1991; Terrazas 1994, 1999; Terrazas & Wendt 1995), and by using the multiple entry key of InsideWood, a wood anatomy website (InsideWood 2004-onwards; Wheeler 2011). For the classification of ray types, we employed the terminology proposed by Kribs (1935). Anacardiaceae has mostly heterogeneous rays (Kribs’s Types IIA and IIB). In the heterogeneous Type IIA, the uniseriate rays are composed of upright cells, and the multiseriate portions of multiseriate rays are composed mostly of procumbent cells with short uniseriate wings of upright cells. In the heterogeneous Type IIB, the uniseriate rays are of two types: composed of upright cells or composed of procumbent cells. Multiseriate portions are composed mostly of procumbent cells and have very short uniseriate wings composed of upright cells (Kribs 1935; Carlquist 2001). The speci- mens described here are housed in the Colección de Paleontología, from Benemérita Universidad Autónoma de Puebla, Puebla, Mexico. SystematiC DESCRIPTION Core Eudicots Malvids – Eurosids II Order – Sapindales Family – Anacardiaceae Genus – Bosquesoxylon Pérez-Lara, Castañeda-Posadas et Estrada-Ruiz, gen. nov. Species – Bosquesoxylon chiapiasense Pérez-Lara, Castañeda-Posadas et Estrada- Ruiz, sp. nov. Etymology – The generic name refers to the Formation, where the material was collected. The specific epithet refers to Chiapas State, Mexico, where the El Bosque Formation is found. Holotype hic designatus – BUAPALV 1536 A, B and C. Age – Eocene. Material – Description based on a single mature wood sample of permineralized float wood, about 7.7 cm in width and 13.6 cm long. Estimated original axis diameter of ~60 cm. Downloaded from Brill.com10/06/2021 01:24:04AM via free access 546 IAWA Journal 38 (4), 2017 Figure 2. Bosquesoxylon chiapasense Pérez-Lara, Castañeda-Posadas et Estrada-Ruiz, gen. et sp. nov. (BUAPALV 1536). – A: Diffuse porous wood (TS). Scale bar = 300 μm. – B: Solitary vessel, scanty paratracheal parenchyma, and growth ring boundary marked by latewood fibers (arrows) (TS). Scale bar = 100 μm. – C: Simple perforation plate; polygonal and alternate intervessel pits (TLS). Scale bar = 92 μm. – D: Axial parenchyma strand (arrows; F = fibers) (RLS). Scale bar = 16 μm. – E: Multiseriate rays (TLS). Scale bar = 100 μm. – F: Vessel-ray parenchyma pits circular, angular, and horizontally elongated with reduced borders (RLS). Scale bar = 23 μm. – G: Septate fibers (arrows) (TLS). Scale bar = 20 μm. – H: Heterocellular rays and a radial canal (TLS). Scale bar = 100 μm. – I: Heterocellular rays (RLS). Scale bar = 100 μm. – J: Showing three radial canals in a ray (TLS). Scale bar = 100 μm. – K: Prismatic crystals (arrow) (RLS). Scale bar = 30 μm. → Diagnosis – Distinct growth ring boundaries marked by radially narrowed latewood fibers; vessels solitary and in radial multiples of mainly 2 to 3; intervessel pitting alter- nate; vessel-ray and vessel parenchyma pits with reduced borders, horizontally elongated to round; non-septate and septate fibers, 1–2 septa per fiber; axial parenchyma mostly scanty paratracheal, also apotracheal diffuse, vasicentric; heterocellular rays, Kribs type IIA, ray body composed entirely of procumbent cells, and usually one marginal row of erect or square cells; radial canals in some multiseriate rays. Description in IAWA feature numbers: 1, 5, 13, 22, 23, 26, 27, 31, 42, 47, 56, 65,
Recommended publications
  • A History of Fruits on the Southeast Asian Mainland
    OFFPRINT A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm Occasional Paper 4 Linguistics, Archaeology and the Human Past Edited by Toshiki OSADA and Akinori UESUGI Indus Project Research Institute for Humanity and Nature, Kyoto, Japan 2008 ISBN 978-4-902325-33-1 A history of Fruits on the Southeast Asian mainland A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm ABSTRACT The paper presents an overview of the history of the principal tree fruits grown on the Southeast Asian mainland, making use of data from biogeography, archaeobotany, iconography and linguistics. Many assertions in the literature about the origins of particular species are found to be without empirical basis. In the absence of other data, comparative linguistics is an important source for tracing the spread of some fruits. Contrary to the Pacific, it seems that many of the fruits we now consider characteristic of the region may well have spread in recent times. INTRODUCTION empirical base for Pacific languages is not matched for mainland phyla such as Austroasiatic, Daic, Sino- This study 1) is intended to complement a previous Tibetan or Hmong-Mien, so accounts based purely paper on the history of tree-fruits in island Southeast on Austronesian tend to give a one-sided picture. Asia and the Pacific (Blench 2005). Arboriculture Although occasional detailed accounts of individual is very neglected in comparison to other types of languages exist (e.g.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Bouea) Based on Morphological Characters in Indonesia
    RESEARCH ARTICLE % SABRAO Journal of Breeding and Genetics 48 (4) 504-517, 2016 DIVERSITY OF GANDARIA (BOUEA) BASED ON MORPHOLOGICAL CHARACTERS IN INDONESIA T. HARSONO1, N. PASARIBU1, SOBIR2 and FITMAWATI3* 1Departement of Biology, North Sumatera University, Medan, Indonesia 2Center for Tropical Horticultural (PKHT), Bogor Agricultural University, Bogor, Indonesia 3Department of Biology, Riau University, Pekanbaru, Indonesia *Corresponding author’s email: [email protected] Email addresses of co-authors: [email protected], [email protected], [email protected] SUMMARY The major distribution of Bouea spp from the family Anacardiaceae is common in Malaysian region. The genus Bouea has three species B. Marcophylla, B. oppositifolia, and B. poilanei. Morphological variations were found in Bouea in various regions of Indonesia. This study aims to review the genetic diversity and grouping of Bouea spp in Indonesia using morphological markers. A total of 75 accessions of B. macrophylla and 30 accessions of B. oppositifolia obtained from 13 provinces in Indonesia observed with variations using 31 and 81 characters, respectively as morphological markers. Result of the observations were then cluster analyzed using the program NTSYS version 2.02 and confirmed using principal component analysis (PCA). Results revealed that morphological markers which can distinguish Bouea from other plants were opposite leaves pattern and purle seeds. Morphological markers that distinguished B. macrophylla with B. oppositifolia were leaf size, fruit size, fruit shape, fruit color, flesh color, and shape of the leaf axillary bud. Cluster analysis showed that B. macrophylla has similarity coefficient of 0.77 to 1.00 which is sub-divided in seven major groups with coefficient of 0.93.
    [Show full text]
  • Research Article: Life History and Host Range of Prochoerodes Onustaria, an Unsuitable Classical Biological Control Agent of Brazilian Peppertree
    Biocontrol Science and Technology ISSN: 0958-3157 (Print) 1360-0478 (Online) Journal homepage: http://www.tandfonline.com/loi/cbst20 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jones & G. S. Wheeler To cite this article: E. Jones & G. S. Wheeler (2017) Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree, Biocontrol Science and Technology, 27:4, 565-580, DOI: 10.1080/09583157.2017.1325837 To link to this article: http://dx.doi.org/10.1080/09583157.2017.1325837 Published online: 16 May 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=cbst20 Download by: [University of Florida] Date: 13 July 2017, At: 08:24 BIOCONTROL SCIENCE AND TECHNOLOGY, 2017 VOL. 27, NO. 4, 565–580 https://doi.org/10.1080/09583157.2017.1325837 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jonesa,b and G. S. Wheelera aUSDA/ARS Invasive Plant Research Laboratory, Ft Lauderdale, FL, USA; bSCA/AmeriCorps, Ft Lauderdale, FL, USA ABSTRACT ARTICLE HISTORY The life history and host range of the South American defoliator Received 13 January 2017 Prochoerodes onustaria (Lepidoptera: Geometridae) were examined Accepted 26 April 2017 to determine its suitability as a classical biological control agent of KEYWORDS the invasive weed Brazilian Peppertree, Schinus terebinthifolia,in Schinus terebinthifolia; the U.S.A.
    [Show full text]
  • Keel, S. 2005. Caribbean Ecoregional Assessment Cuba Terrestrial
    CARIBBEAN ECOREGIONAL ASSESSMENT Cuba Terrestrial Report July 8, 2005 Shirley Keel INTRODUCTION Physical Features Cuba is the largest country in the Caribbean, with a total area of 110,922 km2. The Cuba archipelago consists of the main island (105,007 km2), Isla de Pinos (2,200 km2), and more than one thousand cays (3,715 km2). Cuba’s main island, oriented in a NW-SE direction, has a varied orography. In the NW the major mountain range is the Guaniguanico Massif stretching from west to east with two mountain chains of distinct geological ages and composition—Sierra de los Organos of ancient Jurassic limestone deposited on slaty sandstone, and Sierra del Rosario, younger and highly varied in geological structure. Towards the east lie the low Hills of Habana- Matanzas and the Hills of Bejucal-Madruga-Limonar. In the central part along the east coast are several low hills—from north to south the Mogotes of Caguaguas, Loma Cunagua, the ancient karstic range of Sierra de Cubitas, and the Maniabón Group; while along the west coast rises the Guamuhaya Massif (Sierra de Escambray range) and low lying Sierra de Najasa. In the SE, Sierra Maestra and the Sagua-Baracoa Massif form continuous mountain ranges. The high ranges of Sierra Maestra stretch from west to east with the island’s highest peak, Pico Real (Turquino Group), reaching 1,974 m. The complex mountain system of Sagua-Baracoa consists of several serpentine mountains in the north and plateau-like limestone mountains in the south. Low limestone hills, Sierra de Casas and Sierra de Caballos are situated in the northeastern part of Isla de Pinos (Borhidi, 1991).
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Seedling Growth Responses to Phosphorus Reflect Adult Distribution
    Research Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees Paul-Camilo Zalamea1, Benjamin L. Turner1, Klaus Winter1, F. Andrew Jones1,2, Carolina Sarmiento1 and James W. Dalling1,3 1Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama; 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA; 3Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA Summary Author for correspondence: Soils influence tropical forest composition at regional scales. In Panama, data on tree com- Paul-Camilo Zalamea munities and underlying soils indicate that species frequently show distributional associations Tel: +507 212 8912 to soil phosphorus. To understand how these associations arise, we combined a pot experi- Email: [email protected] ment to measure seedling responses of 15 pioneer species to phosphorus addition with an Received: 8 February 2016 analysis of the phylogenetic structure of phosphorus associations of the entire tree commu- Accepted: 2 May 2016 nity. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species New Phytologist (2016) from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species doi: 10.1111/nph.14045 from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phos- Key words: phosphatase activity, phorus-use efficiency did not correlate with phosphorus associations; however, phosphatase phosphorus limitation, pioneer trees, plant activity was most strongly down-regulated in response to phosphorus addition in species from communities, plant growth, species high-phosphorus sites. distributions, tropical soil resources.
    [Show full text]
  • Cintia Luz.Pdf
    Cíntia Luíza da Silva Luz Filogenia e sistemática de Schinus L. (Anacardiaceae), com revisão de um clado endêmico das matas nebulares andinas Phylogeny and systematics of Schinus L. (Anacardiaceae), with revision of a clade endemic to the Andean cloud forests Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para obtenção de Título de Doutor em Ciências, na Área de Botânica. Orientador: Dr. José Rubens Pirani São Paulo 2017 Luz, Cíntia Luíza da Silva Filogenia e sistemática de Schinus L. (Anacardiaceae), com revisão de um clado endêmico das matas nebulares andinas Número de páginas: 176 Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Anacardiaceae 2. Schinus 3. Filogenia 4. Taxonomia vegetal I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica Comissão julgadora: ______________________________ ______________________________ Prof(a). Dr.(a) Prof(a). Dr.(a) ______________________________ ______________________________ Prof(a). Dr.(a) Prof(a). Dr.(a) _____________________________________ Prof. Dr. José Rubens Pirani Orientador Ao Luciano Luz, pelo entusiasmo botânico, companheirismo e dedicação aos Schinus Esta é a estória. Ia um menino, com os tios, passar dias no lugar onde se construía a grande cidade. Era uma viagem inventada no feliz; para ele, produzia-se em caso de sonho. Saíam ainda com o escuro, o ar fino de cheiros desconhecidos. A mãe e o pai vinham trazê-lo ao aeroporto. A tia e o tio tomavam conta dele, justínhamente. Sorria-se, saudava-se, todos se ouviam e falavam. O avião era da companhia, especial, de quatro lugares. Respondiam-lhe a todas as perguntas, até o piloto conversou com ele.
    [Show full text]
  • Computer Vision Cracks the Leaf Code
    Computer vision cracks the leaf code Peter Wilfa,1, Shengping Zhangb,c,1, Sharat Chikkerurd, Stefan A. Littlea,e, Scott L. Wingf, and Thomas Serreb,1 aDepartment of Geosciences, Pennsylvania State University, University Park, PA 16802; bDepartment of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912; cSchool of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, Shandong, People’s Republic of China; dAzure Machine Learning, Microsoft, Cambridge, MA 02142; eLaboratoire Ecologie, Systématique et Evolution, Université Paris-Sud, 91405 Orsay Cedex, France; and fDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved February 1, 2016 (received for review December 14, 2015) Understanding the extremely variable, complex shape and venation species (15–19), and there is community interest in approaching this characters of angiosperm leaves is one of the most challenging problem through crowd-sourcing of images and machine-identifi- problems in botany. Machine learning offers opportunities to analyze cation contests (see www.imageclef.org). Nevertheless, very few large numbers of specimens, to discover novel leaf features of studies have made use of leaf venation (20, 21), and none has angiosperm clades that may have phylogenetic significance, and to attempted automated learning and classification above the species use those characters to classify unknowns. Previous computer vision level that may reveal characters with evolutionary significance. approaches have primarily focused on leaf identification at the species There is a developing literature on extraction and quantitative level. It remains an open question whether learning and classification analyses of whole-leaf venation networks (22–25).
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • HANDBOOK of Medicinal Herbs SECOND EDITION
    HANDBOOK OF Medicinal Herbs SECOND EDITION 1284_frame_FM Page 2 Thursday, May 23, 2002 10:53 AM HANDBOOK OF Medicinal Herbs SECOND EDITION James A. Duke with Mary Jo Bogenschutz-Godwin Judi duCellier Peggy-Ann K. Duke CRC PRESS Boca Raton London New York Washington, D.C. Peggy-Ann K. Duke has the copyright to all black and white line and color illustrations. The author would like to express thanks to Nature’s Herbs for the color slides presented in the book. Library of Congress Cataloging-in-Publication Data Duke, James A., 1929- Handbook of medicinal herbs / James A. Duke, with Mary Jo Bogenschutz-Godwin, Judi duCellier, Peggy-Ann K. Duke.-- 2nd ed. p. cm. Previously published: CRC handbook of medicinal herbs. Includes bibliographical references and index. ISBN 0-8493-1284-1 (alk. paper) 1. Medicinal plants. 2. Herbs. 3. Herbals. 4. Traditional medicine. 5. Material medica, Vegetable. I. Duke, James A., 1929- CRC handbook of medicinal herbs. II. Title. [DNLM: 1. Medicine, Herbal. 2. Plants, Medicinal.] QK99.A1 D83 2002 615′.321--dc21 2002017548 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • Anacardiaceae)
    73 Vol. 45, N. 1 : pp. 73 - 79, March, 2002 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Ontogeny and Structure of the Pericarp of Schinus terebinthifolius Raddi (Anacardiaceae) Sandra Maria Carmello-Guerreiro1∗ and Adelita A. Sartori Paoli2 1Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, CEP: 13083-970, Campinas, SP, Brasil; 2Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Caixa Postal 199, CEP: 13506-900, Rio Claro - SP, Brasil ABSTRACT The fruit of Schinus terebinthifolius Raddi is a globose red drupe with friable exocarp when ripe and composed of two lignified layers: the epidermis and hypodermis. The mesocarp is parenchymatous with large secretory ducts associated with vascular bundles. In the mesocarp two regions are observed: an outer region composed of only parenchymatous cells and an inner region, bounded by one or more layers of druse-like crystals of calcium oxalate, composed of parenchymatous cells, secretory ducts and vascular bundles. The mesocarp detaches itself from the exocarp due to degeneration of the cellular layers in contact with the hypodermis. The lignified endocarp is composed of four layers: the outermost layer of polyhedral cells with prismatic crystals of calcium oxalate, and the three innermost layers of sclereids in palisade. Ke y words: Anacardiaceae; Schinus terebinthifolius; pericarp; anatomy; pericarpo; anatomia INTRODUCTION significance particularly at a generic level. However, further ontogenic studies of the Schinus terebinthifolius Raddi, also known as the Anacardiaceae family are necessary to compare Brazilian Pepper Tree, belongs to the tribe the homologous structures in the various taxa (Von Rhoideae (Rhoeae) of the Anacardiaceae family.
    [Show full text]