David O'malley, MD Ovarian Cancer

Total Page:16

File Type:pdf, Size:1020Kb

David O'malley, MD Ovarian Cancer Targeted Approach using Biomarkers, ADC's The Next Frontier David O’Malley, M.D. Ovarian Cancer - Clinical Trial Advisor Director, Division of Gyn Oncology GOG Partners Professor, Department of OB/Gyn The Ohio State University James CCC Objectives • Understanding targeted drug therapy (ADCs) as a treatment for patients with ovarian cancer • Structure • MOA • Effective Delivery Considerations • Targets • Agents Verbal Disclosure (2 years) Consultation and/or Honorarium Institutional Research Support • Abbvie • Abbvie • Agenus • Agenus • Ambry • Amgen • Amgen • AstraZeneca • AstraZeneca • Clovis • Clovis • Immunogen • Elevar • Iovance • Immunogen • Janssen/J&J • Iovance • Merck • Janssen/J&J • Mersana • Merck • Novartis • Mersana • Novocure • Myriad Genetics • Regeneron • Novartis • Roche/Genentech • Novocure • SeaGen • Regeneron • Tesaro/GSK • Roche/Genentech • EMD Serono • SeaGen • Ergomed • Tarveda • Ajinomoto • Tesaro/GSK • GOG Foundation • Serono Inc, FDA-Approved Drugs for Ovarian Cancer 12+ Approvals since Nov 2014 More approvals in the last 6 years than the prior 60 years combined Pembrolizumab MSI/dMMR ROC (2017) Gemcitabine/Carboplatin PlSOC (2006) Olaparib Carboplatin Maintenance PlSOC (2017) (1989) Niraparib Paclitaxel Maintenance PlSOC (2017) Paclitaxel Full (1998) Accelerated (1992) Niraparib HRD ROC > 3-L (2019) 1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020 PLD-Full Rucaparib gBRCAmut/ Etoposide ROC (2005) sBRCAmut ROC > 2-L (2016) (1983) Melphalan Altretamine PLD-Accelerated (1964) Cisplatin Chemo + Bevacizumab (1990) ROC (1999)* (1978) PlSOC (2016) Olaparib Cyclophosphamide (1959) Topotecan Olaparib gBRCAmut 1-L ROC (1996) gBRCAmut ROC > 3-L (2014) Maintenance (2018) Bevacizumab Docetaxel Chemo + Bevacizumab (2014) PlROC (1996) 1-L + Maintenance (2018) Rucaparib Maintenance PlSOC (2018) Niraparib 1-L Maintenance (2020) Olaparib + Bev 1-L Maintenance (2020) https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf. Accessed on 7 March 2021 The Era of Targeted Therapy in Ovarian Cancer is Here Drug Maintenance Later-line Treatment Olaparib 1 SOLO-2 (BRCA mut) Study 42 (BRCA mut) Study 19 (Dec 19, 2014) (Aug 17, 2017) SOLO-1 (BRCA mut) (Dec 19, 2018) With Bev PAOLA-1 (HRD) (May 8, 2020) 2,3 ARIEL3 Study 10 (BRCA mut) Rucaparib (April 6, 2018) ARIEL2 (BRCA mut) (Dec 19, 2016) 4 NOVA QUADRA Niraparib (Mar 27, 2017) (Oct 23, 2019) PRIMA (April 29, 2020) 5 GOG218 AURELIA Bevacizumab (June 13, 2018) (Nov 14, 2014) OCEANS – GOG213 (Dec 6, 2016) 1. Olaparib package insert. AstraZeneca Pharmaceuticals LP; 2020. 2. FDA. Summary Review for Regulatory Action: Olaparib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206162Orig1s000SumR.pdf. Approval date December 19, 2014. Accessed April 10, 2018. 3. Rucaparib package insert. Clovis Oncology, Inc; April 2018. 4. Niraparib package insert. TESARO, Inc; August 2020. 5. https://www.drugs.com/history/avastin.html Antibody Structure • Antigen • Linker • Payload Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018, VOL. 7, NO. 3, e1395127 Antibody Structure • Antigen Properties • High homogenous expression on tumor cells • Low/no expression on normal cells • Antigen-antibody binding is the first mechanistic step in a cascade of events • The target antigen must be well internalized by receptor mediated endocytosis • Should not be down-regulated by endocytosis or by the effects of repeated stimulation during treatment • Minimum antigen expression threshold is required for ADC efficacy Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018, VOL. 7, NO. 3, e1395127 Antibody Structure • Payload • Drugs that are suitable for antibody conjugation and deliver an effective cytotoxic dose • The most commonly utilized payloads in ovarian cancer are: • Monomethyl auristatin E (MMAE/Vedotin) • DM4 (Ravtansine/Soravtansine) • High potency in the picomolar range is key to therapeutic benefit as payload delivery is limited by the drug to antibody ratio (DAR) • Bystander effect: membrane permeable allows for diffusion from targeted tumor cells into neighboring cells Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018, VOL. 7, NO. 3, e1395127 Antibody Structure • Linker Properties • Forms the chemical connection between the antibody and payload • Main function is to stabilize the cytotoxic payload while in circulation and allowing release of the payload when the ADC is antigen-bound or internalized • A majority of linkers are designed to allow for payload release after internalization of the ADC • Cleavable: releases the active metabolite intracellularly after cleavage via enzymes, hydrolysis, or reduction of disulfide bonds • Non-cleavable: complete degradation of the antibody backbone before the active metabolite is releases Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018, VOL. 7, NO. 3, e1395127 Antibody Structure • Linker Properties • Forms the chemical connection between the antibody and payload • Main function is to stabilize the cytotoxic payload while in circulation and allowing release of the payload when the ADC is antigen-bound or internalized • A majority of linkers are designed to allow for payload release after internalization of the ADC • Cleavable: releases the active metabolite intracellularly after cleavage via enzymes, hydrolysis, Choice of linker is also a key determinant of or reduction of disulfide bonds biodistribution, therapeutic activity and • Non-cleavable: complete pharmacokinetics and represents a fine degradation of the antibody backbone before the active balance between therapeutic value/toxicity metabolite is releases and distribution Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018, VOL. 7, NO. 3, e1395127 Drug to antibody ratio (DAR) • Determined by the linker utilized and is an • Position and number of payloads bound to essential factor affecting therapeutic toxicity with the antibody can have profound effects on: an increased DAR resulting in increased toxicity. • the binding to the antigen, • While a high DAR increases the potency of the • the aggregation of the ADC, ADC, it can adversely affect pharmacokinetics • the pharmacokinetic characteristics of and distribution. the antibody construct, • Historically, the DAR has been limited to an • the safety profile of the ADC average range of 2-4 because ADCs with a • Improving the antibody site for linker higher DAR were prone to increased plasma conjugation has been greatly enhanced clearance largely due to hepatic ADC uptake. through advancements in protein engineering Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063-70. Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733-5. Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, et al. Effects of Drug-Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody-Maytansinoid Conjugates. Bioconjug Chem. 2017;28:1371-81. Hamblett, K.J. Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate. Clin. Cancer Res. 2004, 10, 7063–7070 Mechanism of Action 1. The ADC travels through the systemic circulation to the tumor tissue 2. The antibody binds to the target antigen on the cell surface 3. The ADC complex is then internalized (majority, but not all ADCs) 4. If the ADC has a cleavable linker this is cleaved releasing the cytotoxic payload intracellularly 5. If the linker is non-cleavable, lysosomal degradation of the antibody backbone occurs with release of the cytotoxic payload 6. Microtubule inhibition or other action occurs via binding of the cytotoxic payloads to tubulin (specific to cytotoxic payload utilized) 7. Cell death/apoptosis 8. Bystander Effect - Diffusion of cytotoxic payload across the cell membrane can result in cell death of neighboring cells Calo CA, O'Malley DM. Antibody-drug conjugates for the treatment of ovarian cancer. Expert Opin Biol Ther. 2020 Jun 8:1-13. doi: 10.1080/14712598.2020.1776253. Online ahead of print. PMID: 32463296 Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J Natl Cancer Inst. 2019;111:538-49. Mechanism of Action 1. The ADC travels through the systemic circulation to the tumor tissue 2. The antibody binds to the target antigen on the cell surface Calo CA, O'Malley DM. Antibody-drug conjugates for the treatment of ovarian cancer. Expert Opin Biol Ther. 2020 Jun 8:1-13. doi: 10.1080/14712598.2020.1776253. Online ahead of print. PMID: 32463296 Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-Drug
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Roche/Genentech Managed RG7986 ADC R/R NHL CHU Chugai Managed IONIS IONIS Managed 74 Status As of January 28, 2016 PRO Proximagen Managed
    Roche 2015 results London, 28 January 2016 This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others: 1 pricing and product initiatives of competitors; 2 legislative and regulatory developments and economic conditions; 3 delay or inability in obtaining regulatory approvals or bringing products to market; 4 fluctuations in currency exchange rates and general financial market conditions; 5 uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products; 6 increased government pricing pressures; 7 interruptions in production; 8 loss of or inability to obtain adequate protection for intellectual property rights; 9 litigation; 10 loss of key executives or other employees; and 11 adverse publicity and news coverage. Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche. For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com All mentioned trademarks are legally protected.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • University of Groningen PET Imaging and in Silico Analyses to Support
    University of Groningen PET imaging and in silico analyses to support personalized treatment in oncology Moek, Kirsten DOI: 10.33612/diss.112978295 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Moek, K. (2020). PET imaging and in silico analyses to support personalized treatment in oncology. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.112978295 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 06 The antibody-drug conjugate target landscape across a broad range of tumor types Kirsten L.
    [Show full text]
  • INN-Nimet 1 1.4.2019 a Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum Abagovomabi Abaloparatide Abaloparatidum Abalopara
    INN-nimet Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency 1.4.
    [Show full text]
  • NSCLC (Update) • Cotellic + Zelboraf: Phase III 1L Melanoma (Cobrim), Overall Survival
    Roche YTD September 2015 sales Basel, 22 October 2015 This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others: 1 pricing and product initiatives of competitors; 2 legislative and regulatory developments and economic conditions; 3 delay or inability in obtaining regulatory approvals or bringing products to market; 4 fluctuations in currency exchange rates and general financial market conditions; 5 uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products; 6 increased government pricing pressures; 7 interruptions in production; 8 loss of or inability to obtain adequate protection for intellectual property rights; 9 litigation; 10 loss of key executives or other employees; and 11 adverse publicity and news coverage. Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche. For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com All mentioned trademarks are legally protected.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • WO 2017/011544 Al 19 January 2017 (19.01.2017) P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/011544 Al 19 January 2017 (19.01.2017) P O PCT (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 38/16 (2006.01) A61K 39/395 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 39/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/042074 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 13 July 2016 (13.07.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/192,269 14 July 2015 (14.07.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 62/197,966 28 July 2015 (28.07.2015) US DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 62/277,201 11 January 2016 ( 11.01.2016) u s LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (71) Applicant: IMMUNEXT, INC.
    [Show full text]
  • International Nonproprietary Names (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2014.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) WHO/EMP/RHT/TSN/2014.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2014 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications –whether for sale or for non- commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances" WHO/EMP/RHT/TSN/2013.1
    INN Working Document 17.406 20/01/2017 Addendum1 to "The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances" WHO/EMP/RHT/TSN/2013.1 Programme on International Nonproprietary Names (INN) Technologies Standards and Norms (TSN ) Regulation of Medicines and other health technologies (RHT) World Health Organization, Geneva © World Health Organization 2017 - All rights reserved. The contents of this document may not be reviewed, abstracted, quoted, referenced, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means, without explicit prior authorization of the WHO INN Programme. This document contains the collective views of the INN Expert Group and does not necessarily represent the decisions or the stated policy of the World Health Organization. Addendum1 to "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" - WHO/EMP/RHT/TSN/2013.1 1 This addendum is a cumulative list of all new stems selected by the INN Expert Group since the publication of "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" 2013. ------------------------------------------------------------------------------------------------------------ -apt- aptamers, classical and mirror ones (a) avacincaptad pegol (113), egaptivon pegol (111), emapticap pegol (108), lexaptepid pegol (108), olaptesed pegol (109), pegaptanib (88) (b) -vaptan stem: conivaptan (82), lixivaptan
    [Show full text]