Consequences of the Introduction of Individuals Within Harvested Populations : the Case of the Mallard Anas Platyrhynchos

Total Page:16

File Type:pdf, Size:1020Kb

Consequences of the Introduction of Individuals Within Harvested Populations : the Case of the Mallard Anas Platyrhynchos UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie de l’évolution et écologie Ecole Doctorale : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement CONSEQUENCES OF THE INTRODUCTION OF INDIVIDUALS WITHIN HARVESTED POPULATIONS : THE CASE OF THE MALLARD ANAS PLATYRHYNCHOS (Translation of the French original version) Jocelyn CHAMPAGNON Soutenue publiquement le 15 décembre 2011 devant le jury composé de: William SUTHERLAND , Professeur, Université de Cambridge, Royaume-Uni , Rapporteur Jean-Michel GAILLARD , Directeur de recherche, CNRS, Lyon, France , Rapporteur Isabelle OLIVIERI , Professeur, Université Montpellier 2, France , Examinatrice Johan ELMBERG , Professeur, Université de Kristianstad, Suède , Examinateur Matthieu GUILLEMAIN , Ingénieur, ONCFS, Arles, France , Directeur Michel GAUTHIER-CLERC , Directeur de recherche, Tour du Valat, Arles, France , Co-directeur Jean-Dominique LEBRETON , Directeur de recherche, CNRS, Montpellier, France , Invité Note: This version is a quick translation of the original thesis wrote in French and it is destined to non-speaking French reviewers. It has not been corrected by native English speaking Acknowledgements First a warm thank to Matthieu, who initiated this thesis, ever available and supporting director. With his sharp eye on the studied topics and his resources to answer questions, I could not have expected a better supervisor. A great thank to Michel who co-supervised me with competence and clever advice. Thanks to him, the Tour du Valat hosted me generously. I thank Jean-Dominique, co-supervisor who made himself available despite his numerous solicitations. His experience and advice were of great value. His sympathy always made our meeting very pleasing. I wish to thank the jury members Bill Sutherland, Jean-Michel Gaillard, Isabelle Olivieri and Johan Elmberg for having accepted this reading during a busy period, hoping to have raised some interest for this work. The whole of this thesis was followed from abroad by Johan Elmberg, member of the thesis committee, through an efficient and friendly collaboration. Thanks to the Office National de la Chasse et de la Faune Sauvage for funding and support to this project. A great thank to Jean-Marie Boutin, Vincent Schricke, Valérie Guérineau and all the CNERA Avifaune Migratrice staff. The Tour du Valat is a foundation with a happy, dynamic and determined staff that I want to thank. I greatly liked this sympathetic and stimulating atmosphere. I personally thank Jean Jalbert, Patrick Grillas and Jean-Jacques Bravais for having largely complemented my PhD grant and some of the research, as well as Marie who makes everything so simple. Thanks to the SIBAGHE doctoral school for the financial support to my stay in the Czech Republic, which made some of the work presented here possible. Many people contributed to this thesis scientifically. In particular, the expertise of CEFE researchers was of paramount importance. First, thanks to Pierre-André Crochet to train me to population genetics analyses in a nice and efficient context. Thanks to Olivier Gimenez for making himself available, his advice and sympathy. Lastly, I thank Roger Pradel and Rémi Choquet, two super-competent scientists who always answered my multiple questions. I thank Pierre Legagneux and Olivier Devineau for our collaboration and friendly exchanges. I also appreciated working with Jakub Kreisinger and Dasa Čížková, in addition to being overwhelmed with a memorable week with them. A large part of the experiments took place at the Marais du Vigueirat thanks to Jean-Laurent Lucchesi, as well as Grégoire Massez, Rémi Tiné, the managing wardens and all the staff working in a friendly atmosphere on this nice marsh. Another important part of the fieldwork was on twenty communal and private hunting estates in Camargue. We wish to thank the landowners, managers and wardens of these domains who helped us during our experiments, especially those who accepted to let us sample their hunting bags. All hunters largely collaborated through Mallard ring reporting, and we sincerely thank them for this. We warmly thank the curators of museums and owners of private naturalised bird collections for letting us sampling Mallard DNA. We also thank the owners of Mallard farms for letting us sample their birds or directly sending DNA samples. Jean-Baptiste Mouronval showed a great involvement and helped me all along this thesis. I thank him for his points of view, vision, doubts and insight, in the field or regarding our shared subjects of thought. Thanks to Marion Vittecoq, for our arrangements on the hunting as well as scientific grounds, and mostly for her energy and good mood. Thanks to Franck Latraube and François Bourguemestre for having been involved in the Loire Estuary and the Brenne, respectively. A great thank to the “released Mallards” students: Perrine Lair, Quentin Charel, Aurélien Villard and Mathieu Famette. I would also like to acknowledge Pär Söderquist, PhD student on Mallard releases in Sweden who did a great job during Camargue fieldwork, sometimes under harsh conditions. A special final thank to those who shared great irrational moments in my office, just for fun: François Cavallo, Guillaume Gayet, Anne-Laure Brochet, Jonathan Fuster. All were of great scientific, proofreading, and administrative or fieldwork help. For many a PhD thesis is a rite of passage where the candidate has to demonstrate his abilities through day and night work during three years. For a few others, it is just short-term contract. The work of the doctorate is certainly between these extremes, sometimes causing deep depression or joy… I tried to find a stable and meaningful way, which was made possible by the wonderful people I met over these three years. The closest ones first, then the music companions, the happy daily workers, the Camargue naturalists as well as all those who happened to visit Tour du Valat. Simply thanks to those who share some bits of life I Arles, in l’Ecole, in the Rendez-vous are here forever, for a while or are already gone. To the NACICCA spirit and all its actors, To all my growing family, To Magui and Nature . ABSTRACT The consequences of releasing captive-bred game animals into the wild have received little attention, despite their potential impact for target populations in terms of demography, behaviour, morphometrics, genetics and pathogens. The present study considers Mallards Anas platyrhynchos released for hunting purposes, an increasing practice in Europe over the last 30 years. Because of domestication process in game farm facilities, our study shows high natural mortality of these ducks once released compared to wild Mallards, in addition to high vulnerability to hunting. A clear genetic differentiation allows discrimination of released and wild Mallards. Hybridization with wild Mallards exists, but did not result into significant introgression. Generally, genetic as well as demographic contributions of captive-bred birds to the natural population were low, but a morphological modification associated with releases was recorded over 30 years in natural population. Ecological consequences of the releases for the wild population seem to be limited, but caution should be maintained on the possible transmission of pathogens (occasionally high prevalence of avian Influenza A in some breeding facilities) and the genetic risks associated with long-term releases. Keywords : Population dynamics, Population genetics, Restocking, Hunting, Duck, Domestication CONSEQUENCES DES INTRODUCTIONS D ’INDIVIDUS DANS LES POPULATIONS EXPLOITEES: L’EXEMPLE DU CANARD COLVERT ANAS PLATYRHYNCHOS RESUME Le renforcement des populations naturelles exploitées par des individus captifs est rarement évalué, bien qu’il puisse induire des modifications notables sur la population naturelle à de nombreux niveaux: démographie, comportement, morphologie, génétique, pathogènes. Ce travail de thèse concerne les introductions de canards colverts Anas platyrhynchos réalisées à des fins cynégétiques. Cette pratique est très répandue en Europe, depuis plus de trente ans. Du fait de leur domestication en élevage, les canards lâchés subissent une mortalité naturelle très forte comparée aux oiseaux sauvages, à laquelle s’ajoute une plus grande vulnérabilité à la chasse. Une différenciation génétique marquée permet de discriminer les oiseaux lâchés de leurs congénères sauvages. Des croisements entre les deux groupes sont détectés, mais l’introgression reste limitée. Globalement, la contribution démographique and génétique des individus d’élevage à la population sauvage est faible, même si une modification morphologique attribuable aux lâchers a été constatée dans la population sauvage en trente ans. Les conséquences écologiques pour la population réceptrice semblent donc limitées, mais une vigilance continue doit s’exercer concernant la diffusion de pathogènes (forte prévalence occasionnelle de virus Influenza A dans les élevages) and les risques génétiques associés au renforcement sur le long terme. Mots clés : Dynamique des populations, Génétique des populations, Renforcement, Chasse, Canard, Domestication CONTENTS 1. INTRODUCTION .............................................................................................................................. - 8 - MAN IN ITS ENVIRONMENT ................................................................................................................................
Recommended publications
  • Lowland Book 170618.Indd
    Grey partridges are an “indicator species” for broader farmland biodiversity, because where they thrive, a range of other species tend to do well. © Markus Jenny 3. Grey partridge In the past, the wild grey partridge thrived on farmland, and was traditionally the main focus of shooting in the lowlands. Management for driven partridge shooting led to rising numbers during the 19th century; it involved comprehensive predator control in a farmed environment that provided good partridge habitat, with weedy cereal crops, traditional crop rotations including grass crops, small fields separated by hedges, fallows and waste ground. By contrast, grey partridge numbers have been falling in the UK throughout the second half of the 20th century, with the decline becoming most marked since the mid-1960s. To focus conservation efforts, the grey partridge was put on the UK Red Data List in 1990, became a priority species under the 1995 UK Biodiversity Action Plan36, and remains a red-listed Bird of Conservation Concern. Progress has been made in areas that make a commitment to partridge conservation, but overall the decline in their numbers continues. GWCT research on grey partridge declines in the 1960s and 1970s helped to establish the new field of agro-ecology, which is studying 38 39 The Knowledge ecology within farming systems. Scientific study moved from recording declines, to investigating the changes in the arable environment that were affecting partridges45–47. This work found that the causes of the grey partridge decline were directly or indirectly related to much wider declines in many aspects of farmland biodiversity. For instance, the UK government monitors national bird abundance through the British Trust for Ornithology’s Breeding Bird Survey, which has shown a 92% decline in numbers of grey partridge from 1967 to 2015, in conjunction with declines in many other species of farmland bird48.
    [Show full text]
  • European Rabbits in Chile: the History of a Biological Invasion
    Historia. vol.4 no.se Santiago 2008 EUROPEAN RABBITS IN CHILE: THE HISTORY OF A BIOLOGICAL INVASION * ** *** PABLO C AMUS SERGIO C ASTRO FABIÁN J AKSIC * Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB) . email: [email protected] ** Departamento de Biología, Facultad de Química y Biología; Universidad de Santiago de Chile. Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB). email: [email protected] *** Departamento de Ecología, Pontificia Universidad Católica de Chile. Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB). email: [email protected] ABSTRACT This work analyses the relationship between human beings and their environment taking into consideration the adjustment and eventual invasion of rabbits in Chile. It argues that in the long run, human actions have unsuspected effects upon the environment. In fact rabbits were seen initially as an opportunity for economic development because of the exploitation of their meat and skin. Later, rabbits became a plague in different areas of Central Chile, Tierra del Fuego and Juan Fernández islands, which was difficult to control. Over the years rabbits became unwelcome guests in Chile. Key words: Environmental History, biological invasions, European rabbit, ecology and environment. RESUMEN Este trabajo analiza las relaciones entre los seres humanos y su ambiente, a partir de la historia de la aclimatación y posterior invasión de conejos en Chile, constatando que, en el largo plazo, las acciones humanas tienen efectos e impactos insospechados sobre el medio natural. En efecto, si bien inicialmente los conejos fueron vistos como una oportunidad de desarrollo económico a partir del aprovechamiento de su piel y su carne, pronto esta especie se convirtió en una plaga difícil de controlar en diversas regiones del país, como Chile central, Tierra del Fuego e islas Juan Fernández.
    [Show full text]
  • Small Game Review “Issues and Concerns”
    ONTARIO FEDERATION OF ANGLERS AND HUNTERS SMALL GAME REVIEW “ISSUES AND CONCERNS” PRELIMINARY INPUT FROM THE ONTARIO FEDERATION OF ANGLERS AND HUNTERS OCTOBER 2009 General and Preliminary O.F.A.H. Comments/Suggestions Purpose The purpose is to update and revise the small game hunting regulations and policies, under the Fish and Wildlife Conservation Act, with the view to: • reflect changes in populations and/or harvest pressure to ensure sustainability; • address significant knowledge gaps where there is a conservation concern; • optimize the ecological, social, economic and recreational benefits that accrue through sustainable hunting of small game birds and mammals; • refine management directions and establish broad targets/objectives; and • manage and prevent human-wildlife conflicts. Scope of Review The review should include the conservation and management of provincial game birds, small game mammals, and furbearers that are also hunted (e.g. red fox, raccoon). At this time, small game species with current management plans/policy (i.e. wild turkey, wolves) need not be a focus within this review. The harvest management of migratory birds is primarily a federal mandate, but the review should consider recommendations for the improved management of migratory birds where there is a clear provincial interest and mandate to do so (e.g. woodcock, sandhill cranes). The harvest of snapping turtles and bullfrogs is regulated under the Fish and Wildlife Conservation Act, but are not considered “small game” for the purpose of this review. Falconry should be recognized as a small and growing method of small game hunting within Ontario; however, it should be mentioned that its regulation is reviewed regularly through the Provincial Falconry Advisory Committee, so it will not be included within this general review.
    [Show full text]
  • The Wild Rabbit: Plague, Polices and Pestilence in England and Wales, 1931–1955
    The wild rabbit: plague, polices and pestilence in England and Wales, 1931–1955 by John Martin Abstract Since the eighteenth century the rabbit has occupied an ambivalent position in the countryside. Not only were they of sporting value but they were also valued for their meat and pelt. Attitudes to the rabbit altered though over the first half of the century, and this paper traces their redefinition as vermin. By the 1930s, it was appreciated that wild rabbits were Britain’s most serious vertebrate pest of cereal crops and grassland and that their numbers were having a significant effect on agricultural output. Government took steps to destroy rabbits from 1938 and launched campaigns against them during wartime, when rabbit was once again a form of meat. Thereafter government attitudes to the rabbit hardened, but it was not until the mid-1950s that pestilence in the form of a deadly virus, myxomatosis, precipitated an unprecedented decline in their population. The unprecedented decline in the European rabbit Oryctolagus( cuniculus) in the mid- twentieth century is one of the most remarkable ecological changes to have taken place in Britain. Following the introduction of myxomatosis into Britain in September 1953 at Bough Beech near Edenbridge in Kent, mortality rates in excess of 99.9 per cent were recorded in a number of affected areas.1 Indeed, in December 1954, the highly respected naturalist Robin Lockley speculated that 1955 would constitute ‘zero hour for the rabbit’, with numbers being lower by the end of the year than at any time since the eleventh century.2 In spite of the rapid increases in output and productivity which British agriculture experienced in the post-myxomatosis era, the importance of the disease as a causal factor in raising agricultural output has been largely ignored by agricultural historians.3 The academic neglect of the rabbit as a factor influencing productivity is even more apparent in respect of the pre-myxomatosis era, particularly the period before the Second World War.
    [Show full text]
  • What Makes a Good Alien? Dealing with the Problems of Non-Native Wildfowl Tony (A
    What makes a good alien? Dealing with the problems of non-native wildfowl Tony (A. D.) Fox Mandarin Ducks Aix galericulata Richard Allen ABSTRACT Humans have been introducing species outside their native ranges as a source of food for thousands of years, but introductions of wildfowl have increased dramatically since the 1700s.The most serious consequence of this has been the extinction of endemic forms as a result of hybridisation, although competition between alien and native forms may also contribute to species loss. Globally, non-native wildfowl have yet to cause major disruption to ecosystem functions; introduce new diseases and parasites; cause anything other than local conflicts to agricultural and economic interests; or create major health and safety issues in ways that differ from native forms. The fact that this has not happened is probably simply the result of good fortune, however, since many introduced plants and animals have had huge consequences for ecosystems and human populations.The potential cost of greater environmental and economic damage, species extinction, and threats to the genetic and species diversity of native faunas means that we must do all we can to stop the deliberate or accidental introduction of species outside their natural range. International legislation to ensure this is remarkably good, but domestic law is generally weak, as is the political will to enforce such regulations.The case of the Ruddy Duck Oxyura jamaicensis in Europe will show whether control of a problem taxon can be achieved and underlines the financial consequences of dealing with introduced aliens.This paper was originally presented as the 58th Bernard Tucker Memorial Lecture to the Oxford Ornithological Society and the Ashmolean Natural History Society, in November 2008.
    [Show full text]
  • Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
    Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used.
    [Show full text]
  • Raising Hares
    Raising Hares Photographs by Andy Rouse/naturepl.com The agility and grace of the European hare (Lepus europaeus) is a familiar sight in the British countryside, and their spirited springtime antics mark the end of winter in the minds of many. Despite their similarities in appearance to the European rabbit, the life history and behaviour of the European hare differs significantly from that of their smaller cousins. We join photographer Andy Rouse as he captures the story of the hare and discovers the true meaning of ‘Mad as a March hare’. Brown hares are widespread throughout central and west- ern Europe, including most of the UK, where they were thought to be introduced by the Romans. “I’ve been passionate about watching and photographing hares for years”, says Rouse. “They are always a challenge because they’re so wary and elusive. Getting decent images usually requires hours of lying quietly in a ditch! So I was de- lighted when I found a unique site in Southern England that has a thriving population of hares”. “Hares are wonderful to work with”, says Rouse. “Concentrating on one population opens up much greater opportunities than photo- graphing at a multitude of sites. It has been such a pleasure getting to know individuals on this project”. “I took these images at a former WWI airfield”, says Rouse. “It is the oldest in the world and still in use, with grass runways. The alternation of cut and long grass provides ideal habitat for hares, which are traditionally found along field margins”. “The hares here are used to people so it’s easier to observe them and predict their behaviour”, says Rouse.
    [Show full text]
  • Europe's Huntable Birds a Review of Status and Conservation Priorities
    FACE - EUROPEAN FEDERATIONEurope’s FOR Huntable HUNTING Birds A Review AND CONSERVATIONof Status and Conservation Priorities Europe’s Huntable Birds A Review of Status and Conservation Priorities December 2020 1 European Federation for Hunting and Conservation (FACE) Established in 1977, FACE represents the interests of Europe’s 7 million hunters, as an international non-profit-making non-governmental organisation. Its members are comprised of the national hunters’ associations from 37 European countries including the EU-27. FACE upholds the principle of sustainable use and in this regard its members have a deep interest in the conservation and improvement of the quality of the European environment. See: www.face.eu Reference Sibille S., Griffin, C. and Scallan, D. (2020) Europe’s Huntable Birds: A Review of Status and Conservation Priorities. European Federation for Hunting and Conservation (FACE). https://www.face.eu/ 2 Europe’s Huntable Birds A Review of Status and Conservation Priorities Executive summary Context Non-Annex species show the highest proportion of ‘secure’ status and the lowest of ‘threatened’ status. Taking all wild birds into account, The EU State of Nature report (2020) provides results of the national the situation has deteriorated from the 2008-2012 to the 2013-2018 reporting under the Birds and Habitats directives (2013 to 2018), and a assessments. wider assessment of Europe’s biodiversity. For FACE, the findings are of key importance as they provide a timely health check on the status of In the State of Nature report (2020), ‘agriculture’ is the most frequently huntable birds listed in Annex II of the Birds Directive.
    [Show full text]
  • And Weasels, 1883–1920 163
    DOI:King: 10.20417/nzjecol.41.29 Spread of stoats and weasels, 1883–1920 163 REVIEW Liberation and spread of stoats (Mustela erminea) and weasels (M. nivalis) in New Zealand, 1883–1920 Carolyn M. King Environmental Research Institute, School of Science, University of Waikato, Hamilton 3240, New Zealand (Email: [email protected]) Published online: 29 May 2017 Abstract: This paper reviews the timing and spread of weasels and stoats across the South and North Islands of New Zealand during the late nineteenth century, entirely from historical records. The flavour of the debates and the assumptions that led to the commissioning of private and government shipments of these animals are best appreciated from the original documents. I describe the sites of the early deliberate releases in Otago, Canterbury, Marlborough, and Wairarapa, and list contemporary observations of the subsequent dispersal of the released animals to named locations in Southland, Westland, Wellington, Hawke’s Bay, Auckland and Northland. Originally, weasels were landed in far greater numbers than stoats (2622 weasels and 963 stoats listed in shipment records) and, while at first they were very abundant, they are now much less abundant than stoats. Two non-exclusive hypotheses could explain this historic change: (1) depletion of supplies of their preferred small prey including birds, mice, roosting bats, lizards, frogs and invertebrates, and (2) competition with stoats. Contemporary historic written observations on the first impacts of the arrivals of weasels and stoats on the native fauna offer graphic illustrations of what has been lost, but usually failed to consider the previous impacts of the abundant rats (Rattus exulans since the late 13th century, and R.
    [Show full text]
  • The High Abundance of Wild Ungulates in a Mediterranean Region: Is This Compatible with the European Rabbit? Author(S): Antonio J
    The high abundance of wild ungulates in a Mediterranean region: is this compatible with the European rabbit? Author(s): Antonio J. Carpio, José Guerrero-Casado, Leire Ruiz-Aizpurua, Joaquín Vicente and Francisco S. Tortosa Source: Wildlife Biology, 20(3):161-166. 2014. Published By: Nordic Board for Wildlife Research DOI: http://dx.doi.org/10.2981/wlb.13113 URL: http://www.bioone.org/doi/full/10.2981/wlb.13113 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Wildlife Biology 20: 161–166, 2014 doi: 10.2981/wlb.13113 © 2014 The Authors. This is an Open Access article Subject Editor: Klaus Hackländer. Accepted 4 December 2014 The high abundance of wild ungulates in a Mediterranean region: is this compatible with the European rabbit? Antonio J. Carpio, José Guerrero-Casado, Leire Ruiz-Aizpurua, Joaquín Vicente and Francisco S.
    [Show full text]
  • Evaluating How Swedish Hunters Determine Which Species Belong in Nature
    European Journal of Wildlife Research (2020) 66: 77 https://doi.org/10.1007/s10344-020-01418-6 ORIGINAL ARTICLE Evaluating how Swedish hunters determine which species belong in nature M. Nils Peterson1 & Alyssa Chen1 & Erica von Essen1 & Hans Peter Hansen1 Received: 30 January 2020 /Revised: 17 August 2020 /Accepted: 24 August 2020 / Published online: 27 August 2020 # Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Understanding whether people view non-native species as belonging in a place will help guide important conservation efforts ranging from eradications of exotics to re-introduction of extirpated species. In this manuscript we describe the degree to which Swedish hunters perceive key wildlife species as belonging in Swedish nature. We surveyed 2014 Swedish hunters randomly selected from a database of all registered hunters with a 47.5% response rate. We measured hunters’ perceptions of the belonging of 10 key species on the Swedish landscape, compared them with confidence intervals for proportions, and predicted them using regression models. Construct validity was assessed through pretesting and focus groups. Our results suggest Swedish hunters consider species introduced wholly by humans as less likely to belong in Sweden compared with species that evolved in situ, species with negative socio-economic impact as less likely to belong in Sweden compared with species with no impact or positive economic impacts, and species with wide distributions to be seen as more likely to belong in Sweden compared with those with narrow distributions. Perceptions of wolves, fallow deer, and European rabbits differed from these broad trends potentially due to unique cultural constructions of belonging for the species and the duration since anthropogenic introductions for the latter species.
    [Show full text]
  • Species Included in Categories A, B & C Scientific
    Species included in categories A, B & C Scientific name Race Category 1 Mute Swan Cygnus olor -- A / C1 2 Bewick’s Swan Cygnus columbianus bewickii A >> Tundra Swan columbianus -- 3 Whooper Swan Cygnus cygnus -- A 4 Bean Goose Anser fabalis fabilis A >> Tundra Bean Goose rossicus -- 5 Pink-footed Goose Anser brachyrhynchus -- A 6 White-fronted Goose Anser albifrons flavirostris A >> Russian White-fronted Goose albifrons -- 7 Lesser White-fronted Goose Anser erythropus -- A 8 Greylag Goose Anser anser anser A / C1 9 Snow Goose Anser caerulescens caerulescens A / D1 >> Greater Snow Goose atlanticus -- 10 Cackling Goose Branta hutchinsii hutchinsii A 11 Canada Goose Branta canadensis canadensis A / C1 >> Todd's Canada Goose interior -- 12 Barnacle Goose Branta leucopsis -- A / C1 13 Brent Goose Branta bernicla hrota A >> Dark-bellied Brent Goose bernicla -- >> Black Brant nigricans -- 14 Ruddy Shelduck Tadorna ferruginea -- B / D1 15 Shelduck Tadorna tadorna -- A 16 Mandarin Duck Aix galericulata -- C1 17 Wigeon Anas penelope -- A 18 American Wigeon Anas americana -- A 19 Gadwall Anas strepera -- A 20 Baikal Teal Anas formosa -- A / D1 21 Teal Anas crecca crecca A 22 Green-winged Teal Anas carolinensis -- A 23 Mallard Anas platyrhynchos platyrhynchos A / C1 24 American Black Duck Anas rubripes -- A 25 Pintail Anas acuta acuta A 26 Garganey Anas querquedula -- A 27 Blue-winged Teal Anas discors -- A 28 Shoveler Anas clypeata -- A 29 Red-crested Pochard Netta rufina -- A 30 Pochard Aythya ferina -- A 31 Redhead Aythya americana -- A 32 Ring-necked
    [Show full text]